Références

Analyse multicritères des projets de prévention des inondations

Guide méthodologique

Juillet 2014
Ce guide méthodologique présente une méthode d'évaluation socioéconomique des mesures de prévention des inondations, basée sur une approche multicritères. Destiné aux porteurs des projets de gestion des inondations (collectivités, établissements publics territoriaux de bassins), aux DREAL et aux DDT ainsi qu'aux bureaux d'études qui travaillent avec eux, il fournit des recommandations et des outils pour évaluer le bien-fondé des mesures envisagées sur les territoires.

Ce guide constitue la synthèse des réflexions et des travaux menés dans deux groupes de travail, l'un portant sur les outils de l'évaluation monétaire et l'autre sur les indicateurs d'enjeux non monétaires. Ces groupes de travail se sont réunis entre décembre 2010 et septembre 2013. Le pilotage de ce travail a été assuré par le CGDD sous maîtrise d'ouvrage DGPR.

Collection « Références » du Commissariat Général au Développement Durable (CGDD)

Directeur de la publication : Jean-Paul Albertini

Auteurs : Natacha Christin, Cédric Peinturier (Service de l'économie, de l'évaluation et de l'intégration du développement durable)
Céline Magnier (Service de l'observation et des statistiques),
* en poste au CGDD au moment de la rédaction du document

Date de publication : Juillet 2014

Remerciements : Ce guide est le fruit d'une collaboration avec différents services du MEDDE, des organismes publics et des institutions extérieures qui œuvrent à la prévention et à la gestion du risque inondation.

Les auteurs remercient particulièrement :
Pour les travaux relatifs au développement des indicateurs d’enjeux : Mathieu Métral (DREAL Rhône-Alpes), Stéphane Jourdain (DREAL Rhône-Alpes), Christophe Moulin (CEREMA), Sylvain Charaud (CEREMA), Elsa Laganier (DREAL Centre), Pierre Philippe (EPTB Loire).
Pour les travaux relatifs à la construction des fonctions de dommages et aux réflexions sur l’évaluation économique des projets de prévention des inondations : Frédéric Grelot (IRSTEA), Pauline Bremond (IRSTEA), Anne-Laurence Agenais (IRSTEA), Amanda Macquart (IRSTEA), Chloé Auffret (CEREMA), Reine Tarrit (CEREMA), Nicolas Baudecueau (CEPRI), Véronique Mignon (CEPRI), Rodolphe Pannier (CEPRI), Jean-Philippe Pène (DGPR), Camille André (UBO-BRGM).
Les auteurs remercient également Céline Perherin (CEREMA) et Frédéric Pons (CEREMA) pour leur contribution au cadrage des scénarios d’aléa nécessaires à l’analyse multicritères.

Crédits photos : Page de couverture : Laurent Mignaux ; document : page 3 Thierry Degen, pages 5 et 69 Laurent Mignaux, page 81 Arnaud Bouissou /METL-MEDDE
Sommaire

Préambule ... 5
Comment utiliser ce guide ? .. 6
Résumé exécutif ... 7

1. Introduction : cadre général du guide .. 9
 1.1. Cadre d’application du guide .. 9
 1.2. Objectifs du guide ... 9

2. Pourquoi une AMC ? .. 10
 2.1. L’AMC en réponse aux limites de l’ACB .. 10
 2.2. Conséquences sur le choix des indicateurs de l’AMC .. 11
 2.3. Conséquences sur l’objectif de l’AMC ... 14

3. Philosophie générale de l’AMC .. 15
 3.1. Un outil basé sur deux séries d’indicateurs ... 15
 3.2. Analyse d’un projet par des indicateurs élémentaires (analyse élémentaire) .. 16
 3.2.1. Tableau des indicateurs élémentaires ... 16
 3.2.2. Comprendre la construction des indicateurs élémentaires ... 17
 3.2.3. Indicateurs élémentaires principaux et indicateurs élémentaires secondaires 17
 3.2.4. Des indicateurs élémentaires calculés pour un unique scénario d’aléa ... 18
 3.2.5. Des indicateurs qui schématisent la vulnérabilité des enjeux .. 18
 3.2.6. Des indicateurs élémentaires non pondérés ... 18
 3.3. Analyse d’un projet par des indicateurs synthétiques (analyse synthétique) ... 19
 3.3.1. Tableau des indicateurs synthétiques ... 19
 3.3.2. Comprendre la construction des indicateurs synthétiques ... 19
 3.3.3. Nécessité d’une approche multi-scénarios ... 20

4. Réaliser une AMC : les grandes étapes .. 21
 4.1. Logigramme de l’AMC .. 21
 4.2. Définir le problème et identifier les différentes options pour y répondre ... 23
 4.2.1. Le diagnostic de vulnérabilité du territoire ... 23
 4.2.2. Les différentes options pour gérer les inondations ... 23
 4.3. Identifier le périmètre de l’étude ... 24
 4.3.1. La situation de référence ... 24
 4.3.2. La portée de l’analyse ou le problème du « statut » .. 25
 4.3.3. L’échelle d’analyse - le périmètre géographique ... 25
 4.3.4. L’horizon temporel de l’étude ... 27
 4.4. Caractériser l’aléa sur le territoire .. 27
 4.5. Caractériser l’occupation du territoire .. 27
 4.6. Caractériser les coûts et les bénéfices d’un projet .. 27
 4.6.1. Les coûts associés à un projet .. 27
5. **« Boîte à outils Aléas » : comment caractériser les aléas nécessaires à l’AMC?**

5.1. Analyse mono-scénario : le scénario de dimensionnement ... 35

5.2. Analyse multi-scénarios : les scénarios d’aléa pour l’analyse des indicateurs moyens annuels ... 35

5.2.1. Principe de construction des courbes dommages-fréquences (ou enjeux-fréquences) ... 35

5.2.2. Les scénarios d’aléa à étudier .. 36

5.2.3. Les cas particuliers ... 37

5.2.4. Hypothèses sur la rupture des ouvrages associées aux scénarios ... 38

5.3. Méthodes de cartographie de l’aléa et paramètres à cartographier .. 38

5.3.1. Méthodes de cartographie ... 38

5.3.2. Paramètres de l’aléa à cartographier pour les indicateurs d’enjeux (non monétaires) ... 39

5.3.3. Paramètres de l’aléa à cartographier pour les indicateurs de dommages (monétaires) ... 39

5.4. Cas particulier de l’aléa submersion marine et prise en compte du recul du trait de côte .. 40

6. **« Boîte à outils Bénéfices » : comment évaluer les bénéfices d’un projet?**

6.1. Évaluation des dommages tangibles : construction des indicateurs de dommages monétaires .. 41

6.1.1. Les outils de l’évaluation monétaire : les fonctions de dommages .. 41

6.1.2. Quid des données de sinistralité dans l’évaluation des dommages monétaires ... 42

6.1.3. Méthode d’utilisation des fonctions de dommages .. 43

6.1.4. Fonctions de dommages aux logements .. 44

6.1.5. Fonctions de dommages aux activités agricoles .. 47

6.1.6. Fonctions de dommages aux entreprises .. 49

6.1.7. Fonctions de dommages aux établissements publics .. 50

6.1.8. Fonctions de dommages pour les submersions marines .. 52

6.1.9. Autres dommages qui peuvent être intégrés dans l’analyse monétaire .. 53

6.1.10. La question des transferts : les dommages à ne pas intégrer dans l’analyse .. 53

6.2. Évaluation des dommages intangibles : construction des indicateurs d’enjeux .. 54

6.2.1. Indicateurs d’enjeux principaux .. 54

6.2.2. Indicateurs d’enjeux secondaires .. 54

6.2.3. Modalités de calcul et représentation cartographique des indicateurs d’enjeux .. 55

6.3. Compléter l’évaluation des bénéfices par la cartographie des enjeux avant et après aménagement .. 56

7. **« Boîte à outils Coûts » : comment évaluer les coûts d’un projet?**

7.1. Typologie des coûts associés à un projet .. 57

7.1.1. Coûts d’investissement .. 57

7.1.2. Coûts d’entretien .. 57

7.1.3. Coûts de réparation .. 57

7.2. Synthèse des coûts et mises en garde : « coûts économisés » et « dommages ajoutés » .. 58
Références

7.2.1. Coûts économisés (coûts négatifs) .. 59
7.2.2. Dommages ajoutés (bénéfices négatifs) ... 59
7.3. Formalisation des coûts dans les indicateurs élémentaires ... 60

8. « Boîte à outils Indicateurs synthétiques » : comment calculer les indicateurs de l’analyse synthétique ? ... 61
8.1. Éléments méthodologiques préliminaires : DMA et NMA .. 61
8.1.1. Dommage Moyen Annuel causé par les inondations ... 61
8.1.2. Nombre Moyen Annuel d’enjeux en zone inondable ... 62
8.2. Calcul des indicateurs synthétiques .. 63
8.2.1. Mesure de l’efficacité du projet .. 63
8.2.2. Mesure du rapport coût-ef ficacité du projet .. 64
8.2.3. Mesure de l’efficience du projet ... 64
8.3. Considérations liées à l’échéancier de réalisation des travaux .. 66
8.3.1. Répartition « classique » des flux économiques ... 66
8.3.2. Échéancier de réalisation des travaux et conséquences sur les calculs .. 66
8.4. Analyse de sensibilité et analyse d’incertitude des indicateurs synthétiques .. 68

Annexes .. 71
A.1. Liste des guides techniques et outils supports .. 71
A.2. Bibliographie .. 72
A.3. Glossaire .. 73
A.4. Liste des abréviations ... 75
A.5. Liste des bases de données mobilisées ... 77
A.6. Expressions mathématiques de la VAN, du ratio B/C et des coûts actualisés (C) 78

Liste des figures, des tableaux, des illustrations et des encadrés ... 79
Liste des figures, des tableaux, des illustrations et des encadrés ... 80

Vous pourrez consulter sur les liens suivants :
- les annexes techniques : http://www.developpement-durable.gouv.fr/IMG/pdf/Annexes_techniques_guide_AMC.pdf
- 1 tableur excel sur les fonctions de dommages aux logements, aux cultures et aux établissements publics (et qui sera complété, fin juillet, par les fonctions de dommages aux entreprises (actualisation en cours par l’IRSTEA)) : http://www.developpement-durable.gouv.fr/Publication-du-guide-et-du-cahier.html
Préambule

Ce guide méthodologique présente une méthode d’évaluation socioéconomique des mesures de prévention des inondations, basée sur une approche multicritères. Destiné aux porteurs des projets de gestion des inondations (collectivités, établissements publics territoriaux de bassins), aux DREAL et aux DDT ainsi qu’aux bureaux d’études qui travaillent avec eux, il fournit des recommandations et des outils pour évaluer le bien-fondé des mesures envisagées sur les territoires.

L’analyse multicritères a été développée dans le cadre de la mise en œuvre du deuxième appel à projets « PAPI » (Programmes d’actions de prévention des inondations). Elle peut remplacer l’analyse coûts-bénéfices dans la procédure de labellisation des programmes et s’utilise alors en réponse au cahier des charges de l’analyse multicritères. Le guide ne peut donc s’utiliser sans se référer au cahier des charges, qui décrit le contenu à minima attendu d’une AMC inondation. Mais cette méthodologie peut plus largement être mobilisée pour évaluer tous types de projets ; elle peut par exemple s’appliquer aux mesures s’inscrivant dans le plan « Submersions rapides » ou être utilisée en appui à la mise en œuvre de la Directive Inondations dans les Stratégies locales de gestion du risque inondation.

Le présent guide s’accompagne d’Annexes techniques qui proposent des fiches méthodes, des courbes de dommages et des éléments de cartographie et de sémiologie. Des outils d’aide à la mise en œuvre de la méthode sont par ailleurs téléchargeables indépendamment (tableaux au format .xls notamment). Enfin, le guide fait référence à des guides techniques rédigés dans le cadre des différents groupes de travail : leur lecture est recommandée pour ceux qui souhaitent comprendre en détail comment les travaux ont été menés et comment les résultats avancés dans ce guide AMC ont été obtenus. La liste de ces guides techniques supports est donnée en annexe A.1.
Comment utiliser ce guide ?

Résumé exécutif

Les éléments d’introduction :
1- Cadre général du guide
2- Pourquoi une AMC ?

La méthode :
3- Philosophie de l’AMC
4- Réaliser une AMC (étapes)

5- Boîte à outils « Aléas »
6- Boîte à outils « Bénéfices »
7- Boîte à outils « Coûts »
8- Boîte à outils « Indicateurs synthétiques »

Les annexes :
A.1- Guides techniques supports
A.2- Bibliographie
A.3- Glossaire
A.4- Liste des abréviations
A.5- Liste des bases de données
A.6- Expressions mathématiques

Les annexes techniques :
- Fiches indicateurs
- Courbes de dommages
- Représentations cartographiques

Les outils téléchargeables :
- Tableurs excel des fonctions de dommages
- Outil d’analyse de la sensibilité et de l’incertitude
Résumé exécutif

Un outil reposant sur deux séries d’indicateurs

L’outil de l’AMC se construit autour de deux séries d’indicateurs : des indicateurs qualifiés d’« élémentaires » et des indicateurs synthétiques. Les indicateurs élémentaires constituent une aide directe aux porteurs de projets dans la construction de leur stratégie de protection contre les inondations. Ils permettent de répondre aux objectifs suivants :

- approfondir la connaissance de la vulnérabilité du territoire,
- évaluer si le projet est pertinent et équilibré (par une analyse précise des bénéfices et des coûts),
- évaluer comment les bénéfices sont répartis géographiquement et par nature d’enjeux sur le territoire et vérifier si l’ensemble des coûts associés à la mise en œuvre du projet ont bien été intégrés,
- donner du sens au projet par une caractérisation « physique » concrète de son impact.

L’AMC permet par ailleurs, au travers d’indicateurs synthétiques, d’évaluer :

- l’efficacité du projet, c’est-à-dire dans quelle mesure il satisfait aux objectifs fixés,
- le rapport coût-efficacité du projet, c’est-à-dire dans quelle mesure il atteint ses objectifs à moindre coût,
- et l’efficience (ou rentabilité) du projet, c’est-à-dire dans quelle mesure il produit de la valeur nette (les bénéfices engendrés dépassent les coûts du projet).

Cette grille d’analyse peut par exemple être mobilisée pour justifier la pertinence d’un projet dans le cadre de procédures de labellisation des projets par l’Etat.

Les étapes de réalisation d’une AMC

![Diagramme des étapes de réalisation d’une AMC](image-url)
Analyse du projet par des indicateurs élémentaires

Les bénéfices d’un projet sont mesurés au travers des dommages évités grâce à la réalisation du projet. Les indicateurs sont donc calculés avant projet et après projet pour un unique scénario d’inondation qui correspond au niveau de protection du projet.

Les indicateurs de dommages monétaires (M1 à M4) correspondent aux impacts déjà intégrés dans l’outil initial de l’ACB. Les indicateurs d’enjeux (P1 à P11) complètent l’analyse de l’impact du projet sur la santé humaine, l’environnement, l’économie et le patrimoine culturel ; ils permettent de s’intéresser aux enjeux « sortis » de la zone inondable grâce au projet ; ils ne permettent ni de capturer le dommage évité grâce à l’abaissement de la ligne d’eau, ni de prendre en compte la vulnérabilité intrinsèque des enjeux.

Deux indicateurs de coûts (M5 et M6) permettent de compléter l’analyse.

Analyse du projet par des indicateurs synthétiques

Contrairement aux indicateurs élémentaires, les indicateurs synthétiques reposent sur une analyse des enjeux pour différents scénarios d’inondation, ce qui permet de comprendre la portée du projet pour l’ensemble des événements susceptibles de survenir sur le territoire. L’approche par les dommages et les enjeux « moyens annuels » permet ainsi de comparer directement différentes alternatives de gestion des inondations sur le territoire en s’abstrayant du paramètre « niveau de protection » du projet.

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Indicateurs synthétiques</th>
<th>Notés…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesurer l'efficacité</td>
<td>Nombre (moyen annuel) d'habitants protégés par le projet</td>
<td>NEMA habitants*</td>
</tr>
<tr>
<td></td>
<td>Nombre (moyen annuel) d'emplois protégés par le projet</td>
<td>NEMA emplois*</td>
</tr>
<tr>
<td></td>
<td>Rapport des dommages évités (moyens annuels) grâce au projet sur les dommages (moyens annuels) en situation de référence</td>
<td>DEMA/ DMA sc. de référence</td>
</tr>
<tr>
<td>Mesurer le rapport coût-éfficacité</td>
<td>Coût total moyen du projet par habitant protégé grâce au projet</td>
<td>C/ NEMA habitants</td>
</tr>
<tr>
<td></td>
<td>Coût total moyen du projet par emploi protégé grâce au projet</td>
<td>C/ NEMA emplois</td>
</tr>
<tr>
<td>Mesurer l'efficience</td>
<td>Valeur Actualisée Nette du projet</td>
<td>VAN</td>
</tr>
<tr>
<td></td>
<td>Ratio des bénéfices générés par le projet sur le coût du projet</td>
<td>B/C</td>
</tr>
</tbody>
</table>

* Un ou deux autres indicateurs d’efficacité supplémentaires peuvent être calculés sous la forme d’indicateurs moyens annuels d’enjeux protégés (NEMA), en fonction de la vulnérabilité spécifique du territoire.
1. Introduction : cadre général du guide

1.1. Cadre d’application du guide

Le présent guide fournit une méthodologie d’évaluation de la pertinence des mesures structurelles de prévention des inondations. Le terme de ‘mesures structurelles’ sera entendu au sens du cahier des charges des Programmes d’actions de prévention des inondations (PAPI) de 2011, et regroupe les mesures de ralentissement dynamique (axe VI) et les ouvrages de protection hydraulique (axe VII).

L’inondation est ici définie comme une submersion temporaire par l’eau de terres qui ne sont pas submergées en temps normal. Cette notion recouvre ainsi les inondations dues aux crues des rivières, des torrents de montagne et des cours d’eau intermittents méditerranéens (débordements de cours d’eau) ainsi que les inondations dues à la mer dans les zones côtières (submersions marines).

Les inondations par ruissellement ou par remontée de nappes rentrent difficilement dans le cadre d’analyse présenté ici. Si l’analyse élémentaire pourra être menée sans difficulté (cf. Figure 2), l’analyse synthétique en revanche est probablement délicate à mettre en œuvre, puisqu’elle nécessite de disposer d’une analyse fréquentielle des événements.

1.2. Objectifs du guide

L’évaluation d’un projet par l’AMC peut servir deux finalités. C’est d’abord un outil d’aide à la décision pour les maîtres de politiques publiques de prévention des risques. L’AMC propose en effet une démarche qui permet de définir les questions qui se posent sur un territoire (notamment par l’évaluation des enjeux exposés aux risques) avant de mettre en comparaison les intérêts des différentes solutions techniques existantes. Un maître d’ouvrage peut donc construire sa stratégie de gestion des risques d’inondation en s’appuyant sur les résultats de l’AMC. Mais l’AMC est également un moyen de justifier des choix faits et des actions proposées. Cette capacité à rendre compte de l’ensemble d’un projet, de ses aspects stratégiques à ses concrétisations pratiques, explique pourquoi le ministère chargé du Développement Durable a récemment rendu obligatoire l’évaluation des projets proposés pour recevoir le label « Programme d’actions de prévention des inondations ».

Ce guide constitue donc une aide aux porteurs de projets dans la construction de leur stratégie de protection contre les inondations. Plus précisément, il répond aux objectifs suivants :

- approfondir la connaissance de la vulnérabilité du territoire,
- évaluer si le projet est pertinent et équilibré (par une analyse précise des bénéfices et des coûts),
- évaluer comment les bénéfices sont répartis géographiquement et par nature d’enjeux sur le territoire (dans une approche « équité ») et vérifier si l’ensemble des coûts associés à la mise en œuvre du projet sont bien intégrés,
- donner du sens au projet par une caractérisation « physique » concrète de son impact (dans une approche « communication »).

Ce guide propose par ailleurs, au travers d’indicateurs synthétiques, d’évaluer dans quelle mesure le projet est efficace et rentable afin de justifier le projet élaboré. Cette grille d’analyse peut par exemple être mobilisée pour répondre à une demande de justification de la pertinence d’un projet dans le cadre de procédures de labellisation des projets par l’État.

L’AMC ne permet pas, en revanche, de contrôler le caractère optimal d’un projet au sens de la théorie économique.
2. Pourquoi une AMC ?

2.1. L’AMC en réponse aux limites de l’ACB

Le développement du recours à l’analyse coûts-bénéfices (ACB), en particulier dans le cadre de la procédure de labellisation de la deuxième génération de PAPI, s’est accompagné d’une prise de conscience des « limites » intrinsèques à l’outil pour mesurer la pertinence économique d’un projet. L’ACB évalue en effet l’efficience (ou rentabilité) d’un projet en calculant la valeur nette (ou avantages nets) produite par ce projet : montant des bénéfices potentiels auquel sont soustraits les coûts associés au projet.

Ne seront intégrés dans l’analyse, par construction, que les flux économiques (bénéfices et coûts) qu’il sera possible de monétariser, c’est-à-dire les impacts du projet qu’il sera possible de traduire en terme monétaire.

Même si l’on dispose d’outils et de méthodes de monétarisation, cet exercice reste complexe pour certaines catégories de bénéfices associés aux projets. L’illustration 1 montre ainsi que l’intérêt de certains programmes d’actions de prévention des inondations repose sur des avantages que l’on ne peut pas valoriser dans l’ACB.

Rappelons que l’ACB développée dans le cadre de la politique de gestion des risques d’inondation repose sur une approche dite des « dommages évités » : les bénéfices correspondent à l’ensemble des dommages que l’on évite à chaque inondation grâce aux mesures. Si l’évaluation monétaire des dommages « physiques » aux bâtiments ou la perte d’exploitation des entreprises peut être menée de façon simple car ils sont associés à un marché, d’autres dommages sont difficilement monétarisables en l’état actuel des connaissances : effet des inondations sur la population (mortalité ou morbidité), sur l’environnement, etc. On distingue généralement les dommages tangibles des dommages intangibles dans la qualification des impacts d’un projet (voir encadré 1).

ILLUSTRATION 1 : Les limites de l’ACB dans l’évaluation des PAPI (extraits choisis)

Bénéfices non monétaires du projet sur la santé humaine :

« La digue [en projet] a un rôle au regard de la sécurité publique. Étant donné sa hauteur et la présence d’enjeux forts à l’arrière, la sécurité publique est engagée. En effet, suite à la tempête Xynthia, le secteur a été identifié comme « zone jaune » (zone présentant un risque pouvant être maîtrisé par des prescriptions complémentaires). En ce sens, les travaux sur cette zone apparaissent indispensables et justifiés. »

Bénéfices non monétaires du projet sur la mobilité des personnes et la continuité des activités :

« Sur le secteur 1, la VAN apparaît légèrement négative, ce qui pourrait laisser penser que l’aménagement n’est pas pertinent. Cependant, il faut rappeler que la VAN n’est calculée qu’à partir de dommages directs et tangibles. Dans le cas présent il conviendra de noter que la fermeture de la voie SNCF sur ce tronçon, conduit à l’interruption générale du trafic ferroviaire (soit 40 à 50 trains par jour) sur cette ligne. Cette situation a bien entendu des conséquences économiques (non chiffrées) [...]. La submersion de la RD au nord conduit également à l’inaccessibilité routière par le Nord de la commune, ce qui peut générer notamment l’intervention des secours en cas de besoin. Dans ces conditions et au regard des résultats de la V.A.N. (très faiblement négative), il apparaît donc pertinent de maintenir cette mesure. »

1 Ces difficultés sont conjoncturelles. Beaucoup ont vocation à disparaître avec des améliorations méthodologiques.

2 On dispose par conséquent d’éléments sur le coût des réparations, du remplacement, etc. qu’implique la remise en état d’un bien suite à une inondation.

3 Cette difficulté réside essentiellement dans l’impossibilité de caractériser le lien de causalité entre l’aléa et le dommage physique. Toute monétarisation du dommage s’avère impossible sans l’appréciation physique préalable du dommage.
ENCADRE 1 : La typologie des dommages
Les dommages sont d’abord qualifiés de tangibles ou d’intangibles :

- les dommages tangibles correspondent à des effets pouvant faire l’objet d’une évaluation monétaire (dégénération de l’habitat, des entreprises…) ;
- les dommages intangibles (stress, pollution…) sont causés à des biens pour lesquels il n’existe pas de marché ad hoc, et donc pas de système de prix.

Les dommages tangibles et intangibles sont ensuite qualifiés de directs ou d’indirects :

- les dommages directs sont imputables à l’impact physique de l’inondation. Ils peuvent correspondre par exemple à des dégâts matériels (destruction, endommagement) ou à des dommages aux personnes (mortalité, morbidité) ;
- les dommages indirects peuvent correspondre aux troubles de jouissance subis dans l’attente du remplacement des biens détruits. Ce sont, par exemple, les conséquences des dégâts matériels sur les activités et les échanges (perte d’exploitation d’une entreprise suite à la destruction de ses stocks ou de l’outil de production)… Parfois, le dommage indirect n’est pas la conséquence d’une perte directe mais de la submersion elle-même : ce sont, par exemple, les problèmes de santé consécutifs à la dégradation de l’état du logement post-inondation ou la perte d’exploitation d’une entreprise suite au caractère impraticable des voies d’accès en raison de leur submersion. Dans ce cas, le dommage peut se situer en dehors de la zone inondable.

L’AMC est construite pour répondre aux limites identifiées de l’ACB et propose de caractériser, en plus des dommages tangibles, les dommages intangibles. Le Tableau 1 explicite la logique de l’extension de l’ACB à l’AMC par le recours à de nouveaux indicateurs.

Le Tableau 1 rappelle que l’ACB intègre déjà les dommages tangibles (dommages directs et certains dommages indirects comme les pertes d’exploitation) ; il montre que de nouveaux indicateurs sont nécessaires pour permettre de prendre en compte dans l’analyse les dommages non évalués monétairement (donc essentiellement les dommages intangibles).

2.2. Conséquences sur le choix des indicateurs de l’AMC

Indicateurs de dommages et indicateurs d’enjeux
Les indicateurs de bénéfices mesurent les dommages évités grâce à la réalisation du projet. En conséquence de la difficulté à monétariser certains impacts d’un projet, deux types d’indicateurs sont construits :

- Des indicateurs de dommages monétaires (coût des dommages aux logements, aux entreprises, etc.), qui correspondent aux bénéfices déjà considérés dans l’outil initial de l’ACB ;
- Des indicateurs d’enjeux, comme par exemple le nombre de personnes en zone inondable, ou le trafic journalier des réseaux de transport (nouveaux indicateurs).

La première catégorie d’indicateurs permet de capter directement le dommage (dégénération d’un bâtiment et coût de sa réparation par exemple). Le second permet uniquement d’approcher le dommage. Ainsi, l’indicateur « nombre de personnes en zone inondable » permet d’approcher la mortalité et la morbidité potentielles causées par une inondation. Ce dommage n’est pas mesurable directement en l’état des connaissances. Le nombre potentiel de décès consécutifs à une
inondation (par noyade, pas électrocution, par chocs…) dépend par exemple d’une multitude de facteurs tant physiques que comportementaux : intensité de l’aléa, heure de survenance de l’événement (jour/nuit), caractéristiques des bâtiments (avec/sans étage), alerte des populations, prise de risque des individus... Les données de retours d’expérience tirées de catastrophes ayant eu des conséquences mortelles sont bien trop peu nombreuses pour mener une analyse statistique permettant d’identifier les principaux déterminants de la surmortalité causée par une inondation et encore moins la probabilité de décès associée à une inondation.

La logique d’ensemble de l’évaluation des bénéfices est explicitée par la Figure 1 :

Figure 1 : Logique d'évaluation des bénéfices, indicateurs de dommages et indicateurs d'enjeux. Source : CGDD

Que captent les indicateurs d’enjeux ?

Ces indicateurs permettent d’approcher essentiellement le dommage intangible.

A titre d’exemple :

- Les indicateurs « nombre de personnes vivant en zone inondable » ou « capacité d’accueil des établissements recevant du public » ont pour objectif de capter les dommages causés par une inondation sur la santé humaine (dommage intangible direct et indirect),
- Les indicateurs « stations de traitement des eaux usées » ou « déchets » permettent d’approcher les dommages potentiels causés par une inondation sur l’environnement (dommage intangible indirect).

La finalité des différents indicateurs d’enjeux est synthétisée dans le Tableau 2.
Tableau 2 : Finalité des indicateurs d’enjeux. Source : CGDD

<table>
<thead>
<tr>
<th>Mode de traitement</th>
<th>Dommages tangibles</th>
<th>Dommages intangibles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Directs</td>
<td>Indirects</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Description</td>
</tr>
<tr>
<td>Dommages intégrés dans l’ACB</td>
<td>destruction matérielle (logements, entreprises, activités agricoles, équipements)</td>
<td>X</td>
</tr>
<tr>
<td>Nouveaux indicateurs complémentaires</td>
<td>Interruption de fonctionnement (réseaux de transport, réseaux électriques et de communication)</td>
<td>X</td>
</tr>
</tbody>
</table>
2.3. Conséquences sur l’objectif de l’AMC

La méthodologie présentée dans ce guide n’a pas vocation à intégrer l’ensemble des dimensions d’un projet (sociale, technique, politique, réglementaire...). Elle n’a donc pas pour objectif d’identifier le projet qui a priori :

- présente la meilleure acceptabilité pour les populations,
- est le plus simple à réaliser techniquement,
- est soumis aux contraintes réglementaires les moins fortes,
- bénéficie du portage politique le plus robuste ou le plus consensuel.

Ces différentes dimensions sont nécessairement prises en compte dans l’élaboration du projet, et selon les cas, peuvent être explicitées dans la démarche-projet. Elles ne sont néanmoins pas intégrées. L’AMC proposé est un outil d’évaluation socio-économique. Elle ne permet pas à elle seule d’évaluer tous les aspects d’un projet.

L’AMC présentée ici a pour objectif d’analyser le plus précisément possible les impacts d’un projet sur la réduction des conséquences des inondations. Ces impacts sont mis en perspective avec les coûts du projet. L’objectif d’un projet « bien dimensionné » reste donc de générer des bénéfices par la réduction des conséquences des inondations en limitant les coûts associés, et c’est ce que l’AMC cherche à mesurer.

L’AMC s’identifie donc à une démarche d’analyse coûts-bénéfices, à la différence qu’elle intègre des impacts monétarisés et non monétarisés. L’AMC est donc à considérer comme une ACB « étendue » dans la mesure où elle ne repose pas sur la comparaison des coûts et des bénéfices sur la base d’un unique étafon commun permettant la comparaison (l’étafon monétaire) mais sur la base de différentes unités de comparaison : dénombrement d’enjeux, pourcentage d’enjeux, coût de dommages aux différents enjeux...

Enfin, l’AMC proposée ne cherche pas à analyser l’ensemble des impacts potentiels du projet mais regarde les impacts en termes de réduction des conséquences des inondations. Par conséquent, ce guide méthodologique ne propose pas d’outils pour évaluer les éléments suivants : impacts du projet sur la biodiversité, le paysage, la création d’emplois... Seront intégrés dans l’analyse les impacts du projet devant réglementairement être compensés.
3. Philosophie générale de l’AMC

3.1. Un outil basé sur deux séries d’indicateurs

L’outil de l’AMC se construit autour de deux séries d’indicateurs : des indicateurs qualifiés d’« élémentaires » et des indicateurs synthétiques.

Les indicateurs élémentaires permettent d’identifier et de qualifier précisément les bénéfices et les coûts attendus d’un projet. Ils constituent une aide directe aux porteurs de projets dans la construction de leur stratégie de protection contre les inondations dans la mesure où ils permettent de répondre aux objectifs suivants :

- approfondir la connaissance de la vulnérabilité du territoire,
- évaluer si le projet est pertinent et équilibré (répartition des bénéfices sur le territoire, et par nature d’enjeux).

Les indicateurs synthétiques permettent, quant à eux, d’évaluer :

- l’efficacité du projet, c’est-à-dire dans quelle mesure il satisfait aux objectifs fixés,
- le rapport coût-efficacité du projet, c’est-à-dire dans quelle mesure il atteint ses objectifs à moindre coût,
- et l’efficience (ou rentabilité) du projet, c’est-à-dire dans quelle mesure il produit de la valeur nette (les bénéfices engendrés dépassent les coûts du projet).

Ces indicateurs synthétiques peuvent être facilement mobilisés pour répondre à une demande de justification de la pertinence d’un projet dans le cadre de procédures de labellisation des projets par l’État.
3.2. Analyse d’un projet par des indicateurs élémentaires (analyse élémentaire)

3.2.1. Tableau des indicateurs élémentaires

Tableau 3 : Objectifs et indicateurs élémentaires de l’AMC. Source : CGDD

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Sous-objectifs</th>
<th>Axes de la DI</th>
<th>N°</th>
<th>Indicateurs élémentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Mise en sécurité des personnes</td>
<td>Santé humaine</td>
<td>P1</td>
<td>Nombre de personnes habitant en ZI et part communale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P2</td>
<td>Part des personnes habitant dans des logements de plain-pied en ZI par commune</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P3</td>
<td>Capacités d’accueil des établissements sensibles en ZI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P4</td>
<td>Part de bâtiments participant directement à la gestion de crise situés en ZI.</td>
</tr>
<tr>
<td></td>
<td>Réduction des dommages aux biens (et réduction des pertes d’exploitation)</td>
<td>Economie</td>
<td>M1</td>
<td>Dommages aux habitations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M2</td>
<td>Dommages aux entreprises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M3</td>
<td>Dommages aux activités agricoles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M4</td>
<td>Dommages aux établissements publics</td>
</tr>
<tr>
<td></td>
<td>Amélioration de la résilience du territoire</td>
<td></td>
<td>P5</td>
<td>Trafic journalier des réseaux de transport en ZI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P6</td>
<td>Part d’entreprises aidant à la reconstruction après une inondation dans les communes exposées.</td>
</tr>
<tr>
<td></td>
<td>Protection de l’environnement (*)</td>
<td>Environnement</td>
<td>P7</td>
<td>Nombre d’emplois en ZI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P8</td>
<td>Stations de traitement des eaux usées en ZI : charge journalière entrante en moyenne annuelle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P9</td>
<td>Déchets : capacités de traitement et de stockage en ZI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P10</td>
<td>Nombre de sites dangereux en zone inondable.</td>
</tr>
<tr>
<td></td>
<td>Protection du patrimoine culturel "immatériel"</td>
<td>Patrimoine</td>
<td>P11</td>
<td>Nombre de bâtiments patrimoniaux et de sites remarquables en ZI.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M5</td>
<td>Coûts d’investissement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M6</td>
<td>Coûts annuels différés</td>
</tr>
</tbody>
</table>

(*) Des travaux sont en cours pour mettre à jour /compléter ces indicateurs de telle sorte à améliorer l’évaluation de l’impact d’un ouvrage de protection des inondations sur l’environnement.
3.2.2. Comprendre la construction des indicateurs élémentaires

Les indicateurs élémentaires permettent de caractériser les coûts et les bénéfices potentiels d’un projet. Coûts et bénéfices sont étudiés au prisme des objectifs de la politique nationale et européenne de gestion du risque d’inondation. En effet, l’AMC a pour finalité de mesurer l’atteinte, par le projet, des objectifs fixés par la politique de gestion du risque d’inondation, et ce à moindre coût.

Politique nationale de gestion du risque d’inondation

Les indicateurs élémentaires ont été construits autour des objectifs-clé de la politique nationale de prévention des inondations portée par le Ministère du Développement Durable. Les objectifs sont les suivants :

- la mise en sécurité des personnes (I),
- la réduction des dommages aux biens (II),
- l’amélioration de la résilience du territoire/la réduction de la vulnérabilité (III).

Ces objectifs sont actuellement portés par deux démarches nationales : les PAPI et les PSR : « Les démarches PAPI et PSR ont pour objectif de réduire la vulnérabilité des territoires et de promouvoir les démarches de prévention du risque d’inondation. […] À la différence des PAPI, qui peuvent être centrés principalement sur la réduction des dommages aux biens, les actions du PSR s’adressent prioritairement à l’amélioration de la sécurité des personnes. »

Ces objectifs sont par ailleurs clairement identifiés dans la Stratégie Nationale de Gestion des Risques d’Inondations en cours d’élaboration : « La nouvelle politique nationale de gestion des inondations s’inscrit dans le cadre de la stratégie nationale de gestion des risques d’inondation et doit permettre d’en atteindre les objectifs :

- augmenter la sécurité des populations exposées,
- stabiliser sur le court terme, et réduire à moyen terme, le coût des dommages potentiels liés aux inondations (importance de la réduction de la vulnérabilité des enjeux existants),
- raccourcir fortement le délai de retour à la normale des territoires sinistrés. »

Les indicateurs élémentaires sont répartis selon ces différents objectifs de la politique de gestion du risque d’inondation (cf. Tableau 3).

Politique européenne de gestion du risque d’inondation

3.2.3. Indicateurs élémentaires principaux et indicateurs élémentaires secondaires

Indicateurs principaux

Deux catégories d’indicateurs élémentaires ont été identifiées : les indicateurs principaux et les indicateurs secondaires. Les indicateurs principaux sont ceux listés, en gras, dans le Tableau 3, page 16. La liste comprend au total 17 indicateurs :

- quinze indicateurs pour caractériser les bénéfices du projet (voir aussi partie 2.2) :
 - 4 indicateurs de dommages monétaires correspondant essentiellement à des dommages directs (M1 à M4),

4 Circulaire du 12 mai 2011 relative à la labellisation et au suivi des projets « PAPI 2011 » et aux opérations de restauration des endiguements « PSR ».
5 DGPR/SRNH/BRM, projet SNGRI, juin 2013.
o 11 indicateurs d’enjeux (captant les dommages non monétaires ; P1 à P11), répartis sur les 4 axes de la Directive Inondations (santé humaine, économie, environnement et patrimoine culturel). Ces dommages correspondent essentiellement à des dommages indirects et/ou intangibles,

- et de 2 indicateurs pour caractériser le coût du projet (M5 et M6).

Ces indicateurs sont soit monétaires (M1 à M6), soit non monétaires (P1 à P11). Les frontières entre indicateurs monétaires et non monétaires peuvent cependant bouger : en fonction de l’état des connaissances, certains dommages, actuellement difficiles à monétiser et donc captés par des indicateurs d’enjeux, pourront être traités comme dommages monétaires si les méthodes et outils adéquats sont développés.

Indicateurs secondaires

L’analyse de ces indicateurs élémentaires principaux peut être complétée par celle d’indicateurs élémentaires secondaires dont la liste est donnée dans le tableau 10 page 54. Ces indicateurs sont jugés secondaires :

- soit parce qu’ils correspondent à un objectif du projet jugé secondaire (par exemple, un projet de protection contre les inondations n’a pas vocation à protéger les espaces naturels même si l’impact des inondations sur le milieu peut être important),
- soit en cohérence avec le principe de proportionnalité de la méthode AMC, parce que leur calcul nécessite un travail jugé trop lourd au regard de leur plus-value (par exemple le nombre annuel de visiteurs dans les musées).

3.2.4. Des indicateurs élémentaires calculés pour un unique scénario d’aléa

L’analyse élémentaire permet de caractériser de façon précise les impacts (dommages évités) et les coûts du projet. Pour que cette analyse soit la plus détaillée possible, les dommages devraient être étudiés pour différents scénarios d’inondation, avant projet et après projet.

Afin d’alléger l’analyse, il est proposé que les dommages soient calculés avant projet et après projet pour un unique scénario d’inondation qui correspond au scénario de dimensionnement du projet.

Ce choix méthodologique implique qu’on étudie in fine les bénéfices maximaux générés par un projet, c’est-à-dire la situation où le projet fonctionne de façon optimale.

3.2.5. Des indicateurs qui schématisent la vulnérabilité des enjeux

Les indicateurs de dommages monétaires permettent d’apprécier de façon précise la vulnérabilité des enjeux exposés au risque inondation. En effet, le coût des dommages varie en fonction de l’intensité de l’aléa (hauteur d’eau, durée de submersion, etc.).

En revanche, les indicateurs d’enjeux caractérisent uniquement la présence d’un enjeu en zone inondable : l’enjeu est considéré en zone inondable dès qu’il est exposé à une hauteur d’eau \(H > 0 \). Par conséquent, la simple présence d’un enjeu dans la zone inondable est représentative d’une vulnérabilité. Un enjeu situé en zone inondable mais peu vulnérable sera ainsi considéré au même titre qu’un enjeu en zone inondable extrêmement vulnérable.

3.2.6. Des indicateurs élémentaires non pondérés

La liste des indicateurs élémentaires n’a pas vocation à être pondérée. Ce choix de non-pondération repose sur deux constats :

- En premier lieu, les indicateurs proposés ne sont pas orthogonaux. Or, l’agrégation d’indicateurs repose sur le postulat de critères portant une information contrastée, indépendante et non redondante.

Dans le cas présent, on peut citer comme exemple d’interdépendance des indicateurs le fait que la présence d’enjeux humains en zone inondable (indicateurs sur la population P1 et P2) s’accompagne nécessairement de la présence d’enjeux économiques (indicateurs sur les logements ou les activités, de M1 à M4).

- En second lieu, l’agrégation d’indicateurs suppose de noter la pertinence du projet sur chaque indicateur. Cette notation s’avère réalisable lorsque l’enjeu consiste à comparer différentes alternatives (le travail consiste donc en une analyse de la pertinence relative d’un projet au regard d’un autre, et non de la pertinence absolue). Pour établir la pertinence absolue d’un projet sur un indicateur donné, il est nécessaire de disposer de valeurs seuils : par exemple, à partir de quel nombre de personnes protégées par un projet peut-on juger que celui-ci est
pertinent ? Ces valeurs seuils sont délicates à identifier, puisqu’elles dépendront nécessairement du caractère rural ou urbain du territoire.

3.3. Analyse d’un projet par des indicateurs synthétiques (analyse synthétique)

3.3.1. Tableau des indicateurs synthétiques

Tableau 4 : Objectifs et indicateurs synthétiques de l’AMC. Source : CGDD

<table>
<thead>
<tr>
<th>Objectif</th>
<th>Indicateurs synthétiques</th>
<th>Notés dans la suite du texte...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacité</td>
<td>Nombre (moyen annuel) d’habitants protégés par le projet (NEMA habitants*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nombre (moyen annuel) d’emplois protégés par le projet (NEMA emplois*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rapport des dommages évités (moyens annuels) grâce au projet sur les dommages (moyens annuels) en situation de référence (DEMA/DMA sc. de référence)</td>
<td></td>
</tr>
<tr>
<td>Coût-efficacité</td>
<td>Coût total moyen du projet par habitant protégé grâce au projet (C/NEMA habitants)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coût total moyen du projet par emploi protégé grâce au projet (C/NEMA emplois)</td>
<td></td>
</tr>
<tr>
<td>Efficience</td>
<td>Valeur Actualisée Nette du projet (VAN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratio des bénéfices générés par le projet sur le coût du projet (B/C)</td>
<td></td>
</tr>
</tbody>
</table>

(*) Selon la situation spécifique du territoire, un ou deux autres enjeux prioritaires supplémentaires peuvent apparaître et justifier le calcul de l’indicateur d’efficacité associé

3.3.2. Comprendre la construction des indicateurs synthétiques

Les indicateurs synthétiques se complètent :

- les indicateurs d’efficacité synthétisent l’information sur les enjeux principaux protégés par le projet (population, emploi et biens) et, si la spécificité du territoire le justifie, sur un ou deux enjeux prioritaires supplémentaires ;
- les indicateurs de rapport coût-efficacité synthétisent l’information comparant les coûts aux bénéfices non monétarisés. Ils permettent d’évaluer le coût que la société consent pour protéger les enjeux principaux.
- la VAN et le rapport B/C synthétisent l’information comparant les coûts aux bénéfices monétarisés. Ils donnent une mesure de la production de bien-être du projet pour la société.

Liens entre indicateurs élémentaires et indicateurs synthétiques :

Les indicateurs synthétiques agrègent l’information jugée essentielle à partir des indicateurs élémentaires :

- l’information concernant la mise en sécurité des personnes via l’indicateur sur le nombre d’habitants protégés (indicateur élémentaire P1) ;
- l’information sur la résilience du territoire, via l’indicateur sur le nombre d’emplois protégés (indicateur élémentaire P7) ;
- l’information sur la protection d’un ou deux autres enjeux supplémentaires si la situation particulière du territoire le justifie via le ou les deux indicateurs synthétiques pertinents calculés à partir des autres indicateurs élémentaires, principaux ou secondaires;
- l’information concernant la réduction des dommages aux biens (bénéfices monétarisés, indicateurs élémentaires M1 à M4) ;
- et l’information sur les coûts du projet (indicateurs élémentaires M5 et M6).

7 En effet, les principaux objectifs d’un projet de prévention des inondations concernent la protection des populations, des emplois et des biens. Néanmoins, certains territoires, compte tenu de leur spécificité, peuvent justifier la production de un ou deux indicateurs d’efficacité supplémentaires.
3.3.3. Nécessité d’une approche multi-scénarios

Pour l’analyse synthétique de la pertinence du projet, il n’est plus possible de se limiter à une approche mono-scénario des dommages, à l’instar de l’analyse élémentaire qui repose sur le scénario de dimensionnement. Le porteur de projet doit nécessairement, pour cette phase d’analyse, exploiter de façon plus complète les impacts d’un projet, pour différents scénarios d’inondation.

La caractérisation des dommages sur plusieurs scénarios d’inondation peut être intégrée dans des indicateurs moyens annuels. Ces indicateurs permettent d’évaluer l’impact de chaque scénario d’inondation pondéré par leur probabilité d’occurrence. On distingue trois catégories d’indicateurs moyens annuels :

- Le Dommage Moyen Annuel (DMA),
- Le Nombre Moyen Annuel d’habitants en zone inondable (NMA habitants),
- Le Nombre Moyen Annuel d’emplois en zone inondable (NMA emplois).

La construction de ces indicateurs synthétiques est donnée dans la partie 8 « Boîte à outils Indicateurs synthétiques ».
4. Réaliser une AMC : les grandes étapes

4.1. Logigramme de l’AMC

La Figure 2 montre les principales étapes de l’élaboration de l’AMC d’un projet de protection contre les inondations. Elles distinguent les phases d’analyses en amont de l’AMC, en particulier le diagnostic du territoire et l’élaboration des différents projets alternatifs, de l’AMC *stricto sensu* (en tant qu’évaluation socio-économique du projet).

En fonction du moment où l’AMC est réalisée, cette analyse peut avoir pour objectif soit la vérification de la pertinence d’un unique projet déjà finalisé (en phase d’études détaillées), soit la comparaison de différentes alternatives en vue de la sélection du "meilleur" projet (en phase d’études d’opportunité). Le schéma fait apparaître cette double finalité de l’outil :

- Un processus linéaire permettant d’analyser la pertinence d’un projet ;
- Une boucle itérative traduisant une démarche plus complexe de comparaison d’alternatives.

À l’instar de l’ACB, la réalisation d’une AMC nécessite de passer par différentes étapes d’analyse et différentes phases de calculs. Les grandes étapes de l’analyse sont décrites dans le présent paragraphe 4 :

- Définir le problème et identifier les différentes solutions (4.2),
- Identifier le périmètre de l’étude (4.3),
- Caractériser les aléas nécessaires à l’étude (4.4),
- Caractériser l’occupation du territoire (4.5),
- Caractériser les coûts et les bénéfices du projet (4.6),
- Analyser les résultats (4.7).

Les méthodes de calcul sont détaillées dans les paragraphes 5, 6, 7 et 8. Ces paragraphes sont à considérer comme des « Boîtes à outils » pour les bureaux d’études qui réalisent l’AMC.
Figure 2 : Les étapes de l’AMC et les « Boîtes à outils » proposées pour la réaliser. Source : CGDD

- Définir le problème et identifier les différentes options
 - Diagnostic du territoire
 - Projet et alternatives

- Analyse de la pertinence d’un projet
 - Identifier le périmètre de l’étude
 - Limites géographiques
 - Limites temporelles
 - Scénario de référence
 - Caractériser les aléas nécessaires à l’étude
 - Analyse mono-scénario
 - Analyse multi-scénarios

- Caractériser l’occupation du territoire
 - Analyse élémentaire :
 - évaluer les bénéfices et les coûts du projet
 - Calcul des bénéfices du projet
 - Monétaires
 - Non monétaires
 - Calcul des coûts du projet
 - Analyse synthétique :
 - évaluer l’efficacité, le coût-éfficacité et l’efficience du projet
 - Calcul de l’efficacité
 - Calcul du coût-éfficacité
 - Calcul de l’efficience

- Comparer les différents projets et sélectionner le plus pertinent

§ 5
§ 6
§ 7
§ 8
4.2. Définir le problème et identifier les différentes options pour y répondre

4.2.1. Le diagnostic de vulnérabilité du territoire

L’élaboration d’un projet de gestion des inondations sur un territoire (et dans le cas de ce guide, d’un projet de protection) implique de s’interroger au préalable sur la vulnérabilité du territoire. Celle-ci peut être appréhendée par une analyse des enjeux qui le constituent et de leur exposition aux inondations. La phase de diagnostic permet ainsi de définir le problème auquel le projet devra répondre.

La façon dont un diagnostic de territoire doit être mené dépasse le périmètre de ce guide. Il faut cependant noter que les indicateurs de la méthode AMC, en situation sans projet, permettent de caractériser de façon fine les enjeux du territoire et peuvent donc contribuer au diagnostic de vulnérabilité du territoire tant pour le scénario de dimensionnement du projet que pour le scénario extrême.

Quelques outils cartographiques, directement corrélés aux indicateurs produits dans le cadre de la méthode d’AMC, sont donc proposés pour aider au diagnostic du territoire. Ces cartes sont les suivantes : carte des enjeux de santé humaine, carte des enjeux économiques, carte des enjeux environnementaux et carte des enjeux patrimoniaux.

En fonction des enjeux étudiés dans l’AMC (principaux, secondaires), ces cartes peuvent être plus ou moins détaillées. Il semble a minima intéressant que les cartes synthétisent les informations des indicateurs principaux :

- Pour la carte des enjeux de santé humaine : logements, établissements sensibles, bâtiments participants à la gestion de crise ; les captages en eau potable constituent un « plus » ;
- Pour la carte des enjeux économiques : bâtiments d’activité, industriels et commerciaux, entreprises, zones d’activité, bâtiments agricoles, gares, réseaux principaux (autoroutes, routes nationales, départementales, voies ferrées) ;
- Pour la carte des enjeux environnementaux : stations d’épuration, installations de traitement des déchets, sites dangereux et éventuellement espaces naturels protégés ;
- une carte du patrimoine culturel : bâtiments patrimoniaux, sites remarquables et éventuellement musées.

Ces enjeux pourront être cartographiés, a minima, pour le scénario de dimensionnement du projet sans aménagement.

Une sémiologie est proposée dans les Annexes techniques, partie 3 (« Représentations cartographiques des enjeux du territoire »). Elle repose sur un format A3, dans une échelle suffisamment lisible, sur un fond IGN SCAN 25, avec représentation des contours des communes.

4.2.2. Les différentes options pour gérer les inondations

Si l’AMC permet de regarder s’il est pertinent de réaliser un projet, elle permet aussi d’identifier la meilleure alternative possible d’un projet. Les questions suivantes pourront utilement servir à identifier des « variantes » au projet :

- Est-il préférable d’opter pour une solution de protection hydraulique, de ralentissement dynamique ou un projet combinant les deux approches ?
- L’ensemble des ouvrages de protection ou des mesures de ralentissement dynamique constituant le projet est-il nécessaire/pertinent ?
- Le niveau de protection assuré par le projet est-il le plus pertinent ? N’est-il pas préférable de protéger plus… ou de protéger moins ?
- Le phasage des travaux prévus est-il adéquat ? N’est-il pas préférable d’adopter une solution provisoire, de retarder l’investissement afin de disposer de meilleures solutions techniques ?

8 Etablissements sensibles : campings, établissements de santé, structures d’accueil pour personnes âgées ou personnes handicapées, établissements d’éveil, d’enseignement, de formation, centres de vacances, centres de loisirs sans hébergement, établissements pénitentiaires.

9 Bâtiments participant à la gestion de crise : centres SDIS, gendarmeries, casernes militaires, préfectures (ou PC prévu au plan Orsec), mairies (ou PC prévu au PCS), services techniques des mairies, centres routiers DIR, commissariats, polices municipales.
4.3. Identifier le périmètre de l’étude

4.3.1. La situation de référence

Généralités

La comparaison de plusieurs projets s’obtient en généralisant ce procédé : les différents projets sont tous comparés à la situation sans projet, qui sert donc bien de référence.

La situation de référence doit être distinguée de la situation initiale :

- La situation initiale est une photographie à l’instant t d’un territoire caractérisé par une exposition à l’inondation et une vulnérabilité.
- La situation de référence correspond à une évolution prévisible du territoire sans nouveau projet. Les évolutions qui semblent irrémédiables doivent nécessairement être intégrées dans la projection (par exemple, difficultés prévisibles de maintien de certaines protections actuelles pour des raisons d’approvisionnement ou autres, accroissement prévisible de certains coûts, etc.).

La situation de référence ne correspond pas non plus à une décision d’absence d’investissement (scénario dit « do nothing »), « elle doit comporter les opérations (d’investissements, d’exploitation ou autres) qui seraient éventuellement nécessaires si le projet n’est pas réalisé (option dite ‘do minimum’) ».

Définition de la situation de référence en milieu « naturel » (sans action de l’Homme)

Le scénario de référence désigne l’évolution du territoire sans projet. Si à l’instant t=0, le territoire est vierge de toute action humaine pour gérer les inondations, alors la situation de référence à considérer doit être celle de l’inaction (« statu quo »).

Définition de la situation de référence en présence d’ouvrages existants

Lorsque le territoire a déjà fait l’objet d’interventions de gestion du risque d’inondation, par exemple quand des ouvrages existent déjà sur le territoire, alors le scénario de référence implique de prendre en compte les considérations suivantes :

- Si les ouvrages existants n’ont pas lieu, à l’instant t=0, d’être remis en cause, alors la situation de référence prend en compte leur gestion. Les coûts associés pour assurer la continuité de la mesure sont alors intégrés dans l’analyse. La situation de référence présente donc de fait un coût.
- Si, à l’instant t=0, le rôle des ouvrages existants est remis en cause (pour des questions principalement de sécurité dans le cas d’un ouvrage dégradé), alors le scénario de référence doit intégrer un coût de déconstruction de l’ouvrage.

Ce scénario de référence constitue ainsi une simplification de la prise en compte de l’ouvrage existant dans les calculs : l’ouvrage remplit son objectif de protection tant qu’il n’est pas déconstruit. Le cas d’un ouvrage laissé à l’abandon n’est pas modélisé, d’une part parce que cette situation n’est pas juridiquement acceptable, et d’autre part parce que la dégradation de l’ouvrage au fil du temps (et donc la diminution du niveau de protection réel assuré) implique d’adopter une approche probabiliste du risque de rupture qui reste complexe à mettre en œuvre.

4.3.2. La portée de l’analyse ou le problème du « statut »

L’AMC a pour objectif de mesurer les impacts du projet au regard de son coût. À l’instar de l’ACB, il faut partir du principe que l’ensemble des avantages générés par le projet (gains) et l’ensemble des inconvénients (pertes), qu’ils soient directs ou indirects, doivent être intégrés dans l’analyse. Cependant, une limite doit nécessairement être fixée pour déterminer ce qui doit être pris en considération dans l’analyse : en effet, en fonction de la portée que l’on donne à l’analyse, certains bénéfices peuvent être assimilés en réalité à des transferts, et donc devenir « transparents ». Cette difficulté est désignée généralement sous le terme de « problème de statut ».

Dans le cadre de l’ACB, l’OCDE rappelle que « la règle de base veut qu’il soit tenu compte des bénéfices et des coûts enregistrés par tous les ressortissants du pays concerné »12. L’analyse doit donc avoir, a minima, une portée nationale. Cette position repose sur l’hypothèse que les projets de protection contre les inondations n’ont pas d’impacts à l’échelle internationale. Pour les projets de protection transfrontaliers, cette hypothèse n’est bien sûr pas recevable et il s’avère alors pertinent de travailler à l’échelle des pays concernés.

C’est par ailleurs la base de toute évaluation économique que de s’intéresser à l’effet d’un projet sur le bien-être de la société dans son ensemble (cf. encadré 2).

ENCADRE 2 : Analyse économique et analyse financière

Analyse économique et analyse financière sont souvent confondues. Elles présentent cependant des objectifs spécifiques, qui se traduisent par des méthodologies de mise en œuvre différentes.

Pour cela, l’analyse financière considère les valeurs financières associées aux biens et services rendus par le projet alors que l’analyse économique intègre la valeur économique totale générée par le projet. Cette valeur économique intègre « des coûts et avantages sociaux [du projet] non considérés dans l’analyse financière parce qu’ils ne génèrent pas de dépenses ou de recettes financières réelles (par exemple les impacts sur l’environnement [...]). » (CE, 2003).

4.3.3. L’échelle d’analyse - le périmètre géographique

La définition du périmètre géographique de l’étude constitue une étape stratégique, de laquelle dépendront la signification et l’exploitation des résultats obtenus. Elle constitue une étape à part entière de la réflexion.

En fonction des dommages considérés dans l’analyse, deux périmètres géographiques peuvent en réalité être considérés : l’aire géographique concernée par les dommages directs et l’aire concernée par les dommages indirects.

11 La méthode probabiliste est l’approche développée par le Royaume-Uni dans le cadre des ACB des projets de prévention des inondations.
Les limites géographiques pour l’analyse des dommages directs dépendent de deux paramètres :

- **de l’aire géographique concernée par l’aléa** : il est recommandé de retenir le périmètre correspondant à l’aire concernée par l’emprise maximale de l’aléa pour les différentes inondations considérées. Les délimitations amont et aval du périmètre géographique doivent correspondre aux limites auxquelles l’impact hydraulique des mesures considérées est nul (ou si faible qu’il n’est pas quantifiable). Si différentes alternatives de gestion du risque d’inondation sont comparées sur le territoire, les délimitations amont et aval du périmètre géographique doivent être les mêmes pour tous les projets, à savoir les limites maximales des différents projets. Il est enfin nécessaire de considérer tous les effets induits par la mesure, même ceux qui ne sont pas désirés (voir aussi à ce sujet la partie VII.2) :
 - Zone où, pour certains scénarios d’aléa, l’inondation est plus sévère en situation avec projet qu’en situation de référence (par exemple du fait de phénomènes de sur inondation). Les effets induits pourront être évalués par la méthode des « dommages évités », même si ce seront plutôt des « dommages ajoutés » qui seront trouvés.
 - Zone où les mesures auront des impacts négatifs (par exemple ceux listés dans une étude d’impact). Si ces impacts ne sont pas compensés par la mise en œuvre de la mesure, leur valorisation monétaire est nécessaire.

- **de l’analyse d’une mesure ou d’un ensemble de mesures** : si plusieurs mesures sont prévues, il faut s’interroger sur l’interdépendance hydraulique potentielle de ces mesures.
 - Les mesures doivent être analysées dans leur ensemble et non indépendamment si elles sont interdépendantes du point de vue hydraulique, c’est-à-dire que la mise en œuvre d’une mesure modifie l’aléa au droit des autres mesures. L’ensemble de ces mesures fait donc l’objet d’une unique AMC.
 - Dans le cas contraire, chaque mesure fera l’objet d’une AMC indépendante.

ILLUSTRATION 3 : Cas de l’indépendance hydraulique de mesures composant un PAPI

Le programme d’actions étudié est composé de huit actions qui modifient l’aléa. Chaque action est composée d’un ensemble de mesures structurelles. Les sept premières actions se situent dans la plaine de R.

L’action 8 porte sur un secteur situé à plus de 23 km de la plaine de R. Il est donc considéré que la mise en œuvre de ces travaux n’aura aucune incidence sur l’aléa au niveau de la plaine. Par ailleurs, le porteur de projet a fixé des objectifs de « non-aggravation » qui veillent à s’assurer que les aménagements n’induisent pas d’impact négatif en aval. Ces objectifs seront respectés.

Une AMC sera donc menée pour l’ensemble des actions 1 à 7. Une seconde AMC sera réalisée pour les actions 8.

Dans le cas où l’analyse porte aussi sur les dommages indirects, cette aire géographique peut être étendue. Certains dommages causés par une inondation peuvent en effet être situés en dehors de la zone inondée. Par exemple, une inondation peut générer des dommages à des entreprises situées hors zone inondée mais dont l’activité est perturbée du fait d’une rupture dans la chaîne d’approvisionnement (routes coupées, fournisseurs directement inondés…). Des habitants peuvent être impactés par une inondation du fait de la perturbation des réseaux (électriques, de transport, etc.) alors qu’ils n’habitent pas dans la zone inondée. Dans ce cas, et lorsque c’est pertinent, le périmètre d’étude dépasse l’emprise maximale des inondations considérées.
4.3.4. L’horizon temporel de l’étude

« L’horizon temporel correspond à la durée sur laquelle sont considérés les flux de coûts et de bénéfices associés au projet. »

L’horizon temporel ne correspond pas à la durée de vie maximale des ouvrages constituant le projet. Il doit plutôt s’apprécier comme la durée pour laquelle il est raisonnable de considérer l’impact du projet sans faire des hypothèses méthodologiques trop lourdes (par exemple sur la constance des enjeux sur le territoire ou sur la constance des aléas dans le cadre du changement climatique) : « les horizons temporels devraient être fixés en tenant compte de l’incertitude des estimations futures [...]. L’argument avancé est que nul ne peut honnêtement prédire ce qui se produira dans 30 ou 40 ans et qu’il serait donc malhonnête de prétendre faire des estimations exactes à plus long terme ».

Le choix de l’horizon temporel est laissé au maître d’ouvrage en fonction de la mesure mise en œuvre (la valeur plafond étant fixée à 50 ans). La valeur résiduelle du projet au-dela de 50 ans est jugée négligeable.

4.4. Caractériser l’aléa sur le territoire

Pour mener à bien une AMC et d’après les recommandations qui seront exposées dans les sections suivantes, il est nécessaire de déterminer les caractéristiques de l’aléa pour différents événements d’inondation, voir aussi la « boîte à outils ».

Selon les types d’inondation et les outils mobilisés dans la suite de l’analyse (courbes de dommages), il peut être nécessaire de déterminer différentes caractéristiques de l’aléa : étendue spatiale, hauteurs de submersion, vitesses d’écoulement, durée de la submersion... Une étude hydraulique est dans tous les cas indispensable et peut s’appuyer sur une modélisation numérique. La période de retour de l’événement est par ailleurs une donnée indispensable pour l’analyse (étude hydrologique).

4.5. Caractériser l’occupation du territoire

Voir sur ce point la partie « diagnostic de vulnérabilité du territoire » (4.2.1).

4.6. Caractériser les coûts et les bénéfices d’un projet

L’AMC caractérise le projet en s’intéressant à deux de ses caractéristiques : les coûts que sa mise en œuvre implique et les bénéfices qu’il génère. Coûts et bénéfices sont étudiés grâce à des indicateurs élémentaires.

4.6.1. Les coûts associés à un projet

Les coûts d’un projet peuvent rapidement être identifiés et quantifiés. Ils seront nécessairement revus et ajustés avec l’avancement des études relatives au projet (études détaillées).

La méthodologie précise pour l’évaluation des coûts par les indicateurs élémentaires est détaillée dans la « boîte à outils ».
4.6.2. Les bénéfices associés à un projet

L’identification et la caractérisation des bénéfices d’un projet impliquent plusieurs étapes d’analyse :

- La deuxième étape va plus loin dans l’analyse du dommage. Elle consiste à traduire monétai­rement les dommages matériels causés par les inondations aux enjeux logements, entreprises, activités agricoles et établissements publics. Le bénéfice est alors le coût du dommage évité grâce soit à la sortie de l’enjeu de la zone inondable, soit à l’abaissement de la ligne d’eau au droit de l’enjeu. Pour obtenir ces indicateurs de bénéfices monétaires, il est nécessaire de s’appuyer sur des fonctions de dommages.

4.6.3. Vers l’analyse synthétique

À partir de ces deux étapes d’analyse, un dernier travail consiste à éclairer plus précisément l’impact du projet en analysant son efficacité face à différents aléas. Il s’agit de recenser certains enjeux non plus pour un scénario d’aléa (avant et après projet) mais pour plusieurs scénarios d’aléa (toujours avant et après projet). Ce travail, potentiellement lourd en termes de collecte de données, est essentiellement nécessaire pour les indicateurs qui seront utilisés dans l’analyse synthétique, c’est-à-dire : les indicateurs sur le nombre d’habitants et le nombre d’emplois en zone inondable (indicateurs non monétaires, cf. étape 1) et les indicateurs sur les dommages aux logements, aux entreprises, aux activités agricoles et aux établissements publics (indicateurs monétaires, cf. étape 2). Cette « troisième » étape permet de regarder l’impact du projet pour tous les scénarios d’inondation et de prendre en compte la probabilité d’occurrence de ces scénarios.

Figure 3 : Étapes d’analyse des bénéfices associés à un projet. Source : CGDD
Ces étapes d’analyse permettent d’obtenir un tableau d’indicateurs, qui éclaire les points forts et les points faibles du projet. Ce tableau regroupe à la fois des indicateurs d’enjeux et des indicateurs de dommages ; ces indicateurs sont soit calculés sur un événement (approche mono-scénario utile à l’analyse élémentaire), soit calculés sur plusieurs événements pour ceux qui sont utilisés par la suite dans l’analyse synthétique (approche multi-scénarios).

Tableau 5 : Les bénéfices monétaires et non monétaires et les scénarios étudiés. Source : CGDD.

<table>
<thead>
<tr>
<th>Axes de la DI</th>
<th>Indicateurs</th>
<th>Scénarios étudiés (avant ET après aménagement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bénéfices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non monétaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santé humaine</td>
<td>P1</td>
<td>au moins 4, dont événement de dimensionnement</td>
</tr>
<tr>
<td></td>
<td>P2 à P4 ; S1 et S2</td>
<td>événement de dimensionnement</td>
</tr>
<tr>
<td>Economie</td>
<td>P5 et P6 ; S3</td>
<td>événement de dimensionnement</td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>au moins 4, dont événement de dimensionnement</td>
</tr>
<tr>
<td>Environnement</td>
<td>P8 à P10 ; S4</td>
<td>événement de dimensionnement</td>
</tr>
<tr>
<td>Patrimoine</td>
<td>P11 ; S5</td>
<td>événement de dimensionnement</td>
</tr>
<tr>
<td>Monétaires</td>
<td>M1 à M4</td>
<td>au moins 4, dont événement de dimensionnement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alimente l’analyse synthétique (NMA habitants)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alimente l’analyse synthétique (NMA emplois)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alimentent l’analyse synthétique (DMA)</td>
</tr>
</tbody>
</table>

La méthodologie précisant l’évaluation des bénéfices par les indicateurs élémentaires est détaillée dans la « boîte à outils » 6. La construction d’indicateurs synthétiques à partir des indicateurs élémentaires est détaillée dans la « boîte à outils » 8.

4.7. Analyser les résultats

4.7.1. Analyse des indicateurs élémentaires

Les indicateurs élémentaires aident le porteur de projet à s’intéresser aux impacts positifs et négatifs de son projet sur la réduction du risque d’inondation. Ces indicateurs permettent de s’interroger sur :

- La répartition des bénéfices par grands secteurs : le projet bénéficie-t-il davantage aux logements, aux entreprises, au secteur agricole ou au secteur public ? L’analyse repose alors essentiellement sur les indicateurs monétaires.

<table>
<thead>
<tr>
<th>Secteurs</th>
<th>Calcul avant projet</th>
<th>Calcul après projet</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitat (M1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activités économiques (M2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture (M3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Équipements publics (M4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- La répartition des bénéfices par commune : quelle commune bénéficie le plus du projet ? L’analyse peut reposer uniquement sur les indicateurs non monétaires.

<table>
<thead>
<tr>
<th>Indicateurs</th>
<th>Communes</th>
<th>Calcul avant projet</th>
<th>Calcul après projet</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicateur P1</td>
<td>Commune 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commune 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Commune 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Les éventuels transferts de risque (bénéficiaires réels et surdommages éventuels) : qu’est ce qui est impacté négativement par le projet ? L’analyse repose sur l’ensemble des indicateurs.

Il faut cependant noter que les indicateurs, calculés sur un unique scénario d’aléa, ne donnent qu’une vision partielle et maximaliste des bénéfices d’un projet.

Dans certaines situations, notamment pour les projets reposant sur des mesures qui ne présentent pas le même niveau de dimensionnement, il peut être pertinent d’analyser ces indicateurs sur différents scénarios d’inondation.

Certains éléments d’analyse des indicateurs élémentaires sont illustrés dans l’exemple présenté dans les deux pages suivantes (illustration 4). L’exemple a la particularité de s’appuyer sur l’étude de trois scénarios d’inondation et non uniquement sur le scénario de dimensionnement.

Pour aller plus loin dans l’interprétation des indicateurs élémentaires, le porteur de projet pourra utilement apporter des informations qualitatives sur les enjeux exposés aux inondations sur le territoire. Quelques exemples sont donnés pour développer la réflexion sur l’impact du projet sur la réduction des conséquences des inondations :

- Effets induits sur les bâtiments participant à la gestion de crise situés en zone inondable : niveau d’importance des bâtiments participant à la gestion de crise, non soustraits à l’inondation : fonction de l’instance concernée dans l’organisation avant, pendant et après inondation.
- Données qualitatives sur les captages en eau potable : préciser si parmi les captages situés en zone inondable, certains figurent dans la liste des 500 captages « prioritaires Grenelle »16. Par ailleurs, à titre qualitatif, il peut être intéressant d’identifier si ces captages peuvent être relayés par d’autres captages hors zone inondable (réseaux maillés).
- Importance particulière de certains musées et bâtiments patrimoniaux : au-delà de l’indicateur du nombre de bâtiments patrimoniaux et de sites remarquables, il est intéressant de pouvoir apprécier l’importance de ces sites, en donnant par exemple par le nombre annuel de visiteurs.
- Impact du dysfonctionnement des réseaux sur l’économie locale : les différents réseaux touchés par l’inondation sont susceptibles d’exporter les conséquences de l’inondation au-delà de la zone inondable (interruption de service). Ce phénomène peut notamment être amplifié par les interdépendances entre les différents réseaux (effets domino) et les phénomènes de saturation des flux en période de crise. En sens inverse, le maillage de certains réseaux peut permettre d’atténuer l’effet de propagation des dysfonctionnements en dehors de la zone inondée. Il s’agit donc ici d’estimer et de préciser dans quelle mesure ces mécanismes participent à la perturbation de l’économie locale ou à une échelle supérieure.

ILLUSTRATION 4 : Quelques exemples d’analyse des indicateurs élémentaires d’un projet

Répartition des bénéfices par grands secteurs :

<table>
<thead>
<tr>
<th>Typologie d’enjeu</th>
<th>T=30ans</th>
<th></th>
<th>T=83ans</th>
<th></th>
<th>T=500ans</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actuel</td>
<td>Aménagé</td>
<td>Actuel</td>
<td>Aménagé</td>
<td>Actuel</td>
<td>Aménagé</td>
</tr>
<tr>
<td>Habitat</td>
<td>48.95</td>
<td>7.53</td>
<td>65.85</td>
<td>23.88</td>
<td>86.52</td>
<td>43.78</td>
</tr>
<tr>
<td>Activités économiques</td>
<td>24.47</td>
<td>3.77</td>
<td>32.93</td>
<td>11.94</td>
<td>43.26</td>
<td>21.88</td>
</tr>
<tr>
<td>Agriculture</td>
<td>1.51</td>
<td>0.58</td>
<td>2.28</td>
<td>0.97</td>
<td>3.10</td>
<td>3.33</td>
</tr>
<tr>
<td>Equipements publics</td>
<td>1.30</td>
<td>0.00</td>
<td>1.38</td>
<td>0.05</td>
<td>1.56</td>
<td>0.31</td>
</tr>
<tr>
<td>Voiries</td>
<td>0.63</td>
<td>0.20</td>
<td>0.93</td>
<td>0.65</td>
<td>1.23</td>
<td>1.01</td>
</tr>
<tr>
<td>Total</td>
<td>76.86 M€</td>
<td>12.07 M€</td>
<td>103.36 M€</td>
<td>38.49 M€</td>
<td>135.66 M€</td>
<td>70.29 M€</td>
</tr>
</tbody>
</table>

« Dans tous les cas (actuel et aménagé) et pour toutes les périodes de retour, on constate que l’habitat représente plus de 60 % du montant global de dommages (et donc plus de 30 % pour les activités économiques).

Les autres catégories d’enjeux sont nettement minoritaires avec un maximum de 5 % du total pour les cultures et de 1 à 2 % pour les équipements publics et les voiries.

D’une manière générale, tous les montants de dommages sont réduits en état aménagé sauf pour l’agriculture pour l’événement extrême (T=500 ans). »

Répartition des bénéfices par commune :

Cas de la population habitant en zone inondable (indicateur P1) :

<table>
<thead>
<tr>
<th>Nombre de personnes habitant en zone inondable</th>
<th>Population communale totale</th>
<th>T=30ans</th>
<th></th>
<th>T=83ans</th>
<th></th>
<th>T=500ans</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nombre</td>
<td>%</td>
<td>Nombre</td>
<td>%</td>
<td>Nombre</td>
<td>%</td>
<td>Nombre</td>
</tr>
<tr>
<td>Commune 1</td>
<td>4699</td>
<td>305.6</td>
<td>0</td>
<td>0</td>
<td>492</td>
<td>10.5</td>
<td>374</td>
</tr>
<tr>
<td>Commune 2</td>
<td>25204</td>
<td>6117</td>
<td>24.3</td>
<td>1.1</td>
<td>8174</td>
<td>32.4</td>
<td>1165</td>
</tr>
<tr>
<td>Commune 3</td>
<td>3346</td>
<td>11</td>
<td>0.3</td>
<td>0</td>
<td>62</td>
<td>1.8</td>
<td>11</td>
</tr>
<tr>
<td>Commune 4</td>
<td>19440</td>
<td>407</td>
<td>2.1</td>
<td>0</td>
<td>571</td>
<td>2.9</td>
<td>516</td>
</tr>
<tr>
<td>Commune 5</td>
<td>1748</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>3.1</td>
<td>64</td>
</tr>
<tr>
<td>Commune 6</td>
<td>8273</td>
<td>361</td>
<td>4.4</td>
<td>0.6</td>
<td>406</td>
<td>5.7</td>
<td>427</td>
</tr>
<tr>
<td>Commune 7</td>
<td>4204</td>
<td>123</td>
<td>2.9</td>
<td>0.9</td>
<td>309</td>
<td>8.6</td>
<td>297</td>
</tr>
<tr>
<td>Total</td>
<td>66914</td>
<td>7325</td>
<td>19.9%</td>
<td>648</td>
<td>1%</td>
<td>10189</td>
<td>15.2%</td>
</tr>
</tbody>
</table>

« On note une très nette amélioration de la protection de la population de la commune 2 au terme des aménagements prévus : environ 7 600 personnes sont protégées pour un événement de période de retour 500 ans et plus de 5 800 pour un événement trentenarial pour lequel il ne demeure que 4 % de la population en zone inondable.

Pour tous les scénarios considérés, le territoire de la commune 2 représente entre 70 et 80 % des personnes exposées aux inondations sur le périmètre d’étude. »
Il faut également noter une incidence négative [du projet] en rive droite :

Sur les communes 4 et 6, on constate une augmentation de la population en zone inondable pour l’événement extrême de période de retour 500 ans uniquement. Ainsi on estime à 80 personnes le nombre de riverains supplémentaires exposés aux inondations sur la commune 6 (soit 15 %) et à 332 sur la commune 4 (soit 34 %). Cette incidence, définie uniquement pour une crue rare est due au principe d’aménagement retenu qui consiste à sécuriser sans empêcher les débordements sur la rive droite.

De plus, on peut déduire du tableau de résultats le nombre de personnes protégées par période de retour :
Pour T = 30 ans : 6677 personnes protégées,
Pour T = 83 ans : 7 396 personnes protégées,
Pour T = 500 ans : 7 744 personnes protégées.

Cas de la superficie d’espaces protégés en zone inondable (indicateur S4) :

Les espaces protégés existant sur le périmètre d’étude sont majoritairement représentés par une zone Natura 2000 (SIC et ZPS) et se concentrent sur les communes 1, 2 et 7.

Le projet restreint la fraction de zone Natura 2000 (SIC et ZPS) inondable sur l’ensemble du territoire. On fait le même constat pour les ZNIEFF sur les communes 2 et 7. En revanche la superficie de ZNIEFF (type I et II) de la commune 1 en zone inondable augmente. Cette augmentation est cependant limitée (environ 5 %).

4.7.2. Analyse des indicateurs synthétiques

Les indicateurs synthétiques permettent au porteur de projet de qualifier son projet sur la base de critères indépendants du niveau de protection choisi. Ils permettent de s’interroger sur :

- Le nombre d’habitants et d’emplois et, si le territoire le justifie, un ou deux autres enjeux, protégés par le projet (prise en compte faite des probabilités d’occurrence),
- Le pourcentage de réduction des dommages grâce à la réalisation du projet,
- Le coût du projet par habitant protégé et par emploi protégé,
- Le montant des dommages économisés par la société (déduction faite des coûts) grâce à l’investissement,
- Le montant de dommages évités par euro investi dans le projet.

Une illustration de l’utilisation de ces indicateurs synthétiques est donnée dans l’encadré ci-après et repose sur le cas d’étude déjà présenté dans la partie précédente « analyse des indicateurs élémentaires ».
ILLUSTRATION 5 : Analyse et interprétation des indicateurs synthétiques d’un projet

L’analyse porte sur un projet dont le coût d’investissement est de 23 M€ et dont les coûts annuels sont estimés à près de 700 k€/an. L’ensemble des dommages ou des coûts est donné en M€ dans les tableaux.

<table>
<thead>
<tr>
<th>Scénario de référence</th>
<th>Scénario avec projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitants en ZI (P1)</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>0,05</td>
</tr>
<tr>
<td>T30</td>
<td>0,033</td>
</tr>
<tr>
<td>T83</td>
<td>0,012</td>
</tr>
<tr>
<td>T500</td>
<td>0,002</td>
</tr>
<tr>
<td>NMA habitants</td>
<td></td>
</tr>
<tr>
<td>NEMA habitants</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scénario de référence</th>
<th>Scénario avec projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emplois en ZI (P7)</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>0,05</td>
</tr>
<tr>
<td>T30</td>
<td>0,033</td>
</tr>
<tr>
<td>T83</td>
<td>0,012</td>
</tr>
<tr>
<td>T500</td>
<td>0,002</td>
</tr>
<tr>
<td>NMA emplois</td>
<td></td>
</tr>
<tr>
<td>NEMA emplois</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scénario de référence</th>
<th>Scénario avec projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dommages (M1 à M4)</td>
<td></td>
</tr>
<tr>
<td>T20</td>
<td>0,05</td>
</tr>
<tr>
<td>T30</td>
<td>0,033</td>
</tr>
<tr>
<td>T83</td>
<td>0,012</td>
</tr>
<tr>
<td>T500</td>
<td>0,002</td>
</tr>
<tr>
<td>DMA</td>
<td></td>
</tr>
<tr>
<td>DEMA</td>
<td></td>
</tr>
</tbody>
</table>

Hypothèses
- Taux d’actualisation : 2,50%
- Horizon temporel : 50 ans

Résultats
- NEMA habitants : 282
- NEMA emplois : 21
- DEMA/DMA référence : 0,68
- C/ NEMA habitants : 0,15
- C/ NEMA emplois : 2,04
- VAN : 30
- B/C : 1,70
Interprétation :
Le projet permet de protéger 282 habitants par an (soit une réduction de la vulnérabilité directe des habitants de 78 %). Il protège 21 emplois par an (soit une réduction de la vulnérabilité directe des emplois de 33 %).
Les dommages monétaires sont réduits de 68 % chaque année.
Le projet permet d’économiser sur 50 ans 30 M€ à la société (déduction faite des coûts). Pour chaque euro investi dans le projet, 1,7 € de dommages sont économisés.
Le projet représente pour la société un coût de 150 k€ par habitant protégé, et un coût de plus de 2 M€ par emploi protégé. Cette différence s’explique par le fait que le territoire est constitué d’un tissu plus résidentiel qu’économique (63 emplois contre 363 habitants en scénario de référence).
Notons enfin que le projet bénéficie davantage aux habitants qu’aux emplois, ce qui est confirmé par l’analyse des dommages évités (voir diagramme de répartition des dommages évités par secteurs ci-dessous).
5. **« Boîte à outils Aléas » : comment caractériser les aléas nécessaires à l’AMC ?**

Selon les indicateurs, le calcul des enjeux évités se fait sur un unique scénario d’aléa, le scénario de dimensionnement ou sur plusieurs. Le premier paragraphe revient donc sur la notion de scénario de dimensionnement du projet à la base de tous les indicateurs élémentaires. Le paragraphe 2 explicite les scénarios hydrauliques complémentaires à analyser pour les indicateurs moyens annuels.

5.1. Analyse mono-scénario : le scénario de dimensionnement

Dans le cas de l’évaluation d’un système de protection (c’est-à-dire d’un ensemble cohérent de mesures interdépendantes du point de vue hydraulique), le niveau de protection du système correspond au niveau de protection de l’ouvrage limitant (c’est-à-dire le plus petit niveau de protection des ouvrages constitutifs du système de protection).

Le choix du scénario d’aléa correspondant au niveau de protection maximise nécessairement les bénéfices affichés dans les indicateurs élémentaires.

5.2. Analyse multi-scénarios : les scénarios d’aléa pour l’analyse des indicateurs moyens annuels

5.2.1. Principe de construction des courbes dommages-fréquences (ou enjeux-fréquences)

Principe général

Le calcul des indicateurs moyens annuels (NMA habitants, NMA emplois et DMA) s’appuie sur des courbes enjeux-fréquences ou dommages-fréquences (voir aussi partie 8.1).

Une courbe dommages-fréquences (respectivement enjeux-fréquences dans la suite de cette partie 5) est la signature de la vulnérabilité d’un territoire, aménagé ou non ; elle est caractéristique de la situation de référence et de la situation avec projet. Pour chaque courbe, les points d’inflexion vont correspondre :

- soit à une modification du comportement hydraulique de la zone protégée (fonction de la topographie et de la morphologie),
- soit à une modification de l’occupation du territoire (modifications des enjeux sur la zone),
- soit enfin à une modification du comportement du système de protection (défaillance fonctionnelle ou structurelle).

Choisir les scénarios d’aléa revient à choisir les points qui composeront cette courbe. Plus les points sont nombreux et plus la courbe reflétera de façon fidèle la vulnérabilité du territoire. **Le choix de ces scénarios doit donc être finement réfléchi afin que la courbe dommages-fréquences soit la plus représentative possible du fonctionnement du site.**

Situation de référence, situation avec projet

Une courbe dommages-fréquences étant caractéristique d’une situation, les scénarios d’aléa à étudier seront généralement différents pour le cas de la situation de référence et le cas de la situation avec projet. Deux cas peuvent en réalité être distingués :

- Soit le territoire, en situation de référence, est caractérisé par l’absence de toute protection (cas du « milieu naturel » défini dans le paragraphe 4.3.1) : alors les événements à étudier pour la situation de référence pourront être les mêmes que ceux étudiés pour la situation avec projet, à l’exception éventuelle du scénario générant les premiers dommages (voir Figure 4, à gauche).
- Soit le territoire, en situation de référence, bénéficie déjà d’un système de protection existant (et le projet cherche à l’améliorer) : alors les scénarios à étudier seront bien différents entre situation de référence et situation avec projet dans la mesure où le comportement hydraulique du système de protection existant diffère nécessairement de celui projeté (voir Figure 4, à droite).
Figure 4 : Représentation de la courbe dommages-fréquences en fonction des situations de référence : "milieu naturel" (à gauche) et système de protection existant (à droite). Source : CEREMA

Événement historique ou théorique ?

En conséquence de ce qui a été dit plus haut, les événements à retenir sont plutôt des événements théoriques et non des événements historiques. Il est possible d’étudier des événements historiques mais leur étude n’est pas suffisante (pas de correspondance avec les points d’inflexion de la courbe). Leur étude est cependant souvent nécessaire au calage des outils utilisés et utile pour la pédagogie et l’amélioration générale de la courbe dommages-fréquences.

Courbe dommages-fréquences, courbe enjeux-fréquences ?

En situation de référence, les scénarios d’aléa étudiés seront identiques pour les courbes dommages-fréquences et enjeux-fréquences. Même remarque pour la situation avec projet.

5.2.2. Les scénarios d’aléa à étudier

Pour construire la courbe dommages-fréquences associée à chaque situation, plusieurs scénarios d’aléa sont à étudier. Il est recommandé d’étudier au minimum quatre scénarios d’inondation :

- le scénario d’aléa générant les premiers dommages ;
- le scénario de dimensionnement du projet ;
- un scénario d’aléa pour lequel l’ouvrage ou le système a un impact hydraulique limité (point où les courbes en situation de référence et en situation de projet se rejoignent) ;
- un scénario d’aléa extrême, de période de retour au moins 1 000 ans.

Ces scénarios s’accordent avec ceux définis dans le cadre de la Directive Inondations17.

Il est possible de préciser encore la courbe en étudiant :

- un scénario d’aléa d’une probabilité fréquente ou moyenne, de période de retour inférieure à la période de retour de l’événement de dimensionnement.

 En particulier, dans le cas où l’événement de dimensionnement du projet est supérieur à l’aléa de référence du PPR, il est recommandé d’étudier en plus l’aléa PPR (c’est-à-dire de travailler avec deux scénarios d’inondations fréquentes ou moyennes et non un seul).

- le scénario correspondant au niveau de sûreté de l’ouvrage ou du système (scénario surtout intéressant dans le cas de submersions marines), c’est-à-dire le niveau au-delà duquel la tenue de la structure de l’ouvrage n’est plus assurée et est susceptible de ruine à tout instant. Il est alors recommandé de s’appuyer sur le guide *ad hoc* du CEREMA18 (« analyse affinée de l’aléa submersion marine »).

17 Pour rappel, la Directive Inondations impose de caractériser trois scénarios d’aléa sur le territoire : un scénario d’inondation « fréquente », d’une période de retour entre 10 et 30 ans, un scénario d’inondation « moyenne », d’une période de retour entre 100 et 300 ans et enfin un scénario d’inondation « extrême », d’une période de retour supérieure ou égale à 1 000 ans.

À noter : du fait même de la pondération des dommages (resp. du nombre d’enjeux en zone inondable) par la probabilité d’occurrence de l’événement, il apparaît que ce sont les événements fréquents qui ont le plus de poids dans les indicateurs moyens annuels. Il est donc important d’orienter l’analyse vers des scénarios d’aléas fréquents ou moyens. Le scénario générant les premiers dommages doit être choisi avec une attention particulière.

Pour le calcul des enjeux protégés et des dommages évités par le projet, le scénario d’aléa extrême n’est pas utile. En effet, les dommages (resp. les enjeux exposés aux inondations) sont alors identiques en situation de référence et en situation avec projet (le projet n’a plus d’impact hydraulique ou son impact est négligeable). Cependant, ce scénario est important pour le calcul de l’indicateur synthétique DEMA/DMA sc. de référence.

Une étude hydrologique/ hydraulique est indispensable pour déterminer les scénarios hydrologiques associés aux différentes probabilités. Par ailleurs, l’incertitude sur la période de retour d’un scénario hydrologique donné est majeure. Elle doit être systématiquement évaluée et intégrée dans l’analyse de sensibilité (voir partie 8.4).

5.2.3. Les cas particuliers

Projet composite et niveaux de protection hétérogènes

Dans le cas d’un système de protection composé de différents ouvrages ne présentant pas tous le même niveau de protection, il est intéressant d’étudier le scénario correspondant au niveau de protection de chaque ouvrage, et de ne pas se limiter à l’analyse du scénario correspondant au niveau de protection de l’ouvrage limitant. En effet, ces configurations peuvent fortement impacter la forme de la courbe dommages-fréquences (ou enjeux-fréquences).

Un exemple est donné dans la Figure 5 pour la construction d’une courbe dommages-fréquences en situation avec projet, pour un système de protection comprenant deux ouvrages n’ayant pas le même niveau de protection.

Figure 5 : Courbe dommages-fréquences dans le cas d’un système de protection comprenant deux ouvrages de niveaux de protection différents.
Source : CEREMA.

Aléa débordement de cours d’eau : variabilité des périodes de retours sur le territoire d’étude

Sur un secteur d’étude étendu où le cours d’eau principal reçoit plusieurs affluents, la période de retour des crues du cours d’eau principal est susceptible de varier de l’amont vers l’aval en fonction de l’importance de la contribution de chacun des affluents et des hypothèses de comitance des débits de pointe. Il est alors nécessaire de découper le secteur d’étude en plusieurs zones hydrologiquement homogènes (le plus souvent les tronçons du cours d’eau principal situés entre les plus « gros » affluents). Ainsi, il convient de considérer un scénario composite (utilisant les différentes fréquences de crues de ces affluents) synthétisé sur le bassin étudié.
5.2.4. Hypothèses sur la rupture des ouvrages associées aux scénarios

Il est recommandé de suivre les hypothèses méthodologiques suivantes concernant le risque de défaillance structurelle des ouvrages ou des systèmes de protection (« rupture »):

- Pour les scénarios d’aléa de période de retour inférieure à la période de retour du scénario de dimensionnement, la probabilité de rupture est jugée nulle.
- Cette hypothèse est posée à la fois pour les ouvrages projetés et les ouvrages existants, dans la mesure où il est considéré que ces derniers sont bien entretenus dans la situation de référence (coûts d’entretien et de réparation pris en compte en situation de référence).
- Pour les scénarios d’aléa de période de retour supérieure à la période de retour du scénario de dimensionnement, l’ouvrage ou le système de protection sera considéré successivement comme soumis à des entrées d’eau puis à des ruptures.

5.3. Méthodes de cartographie de l'aléa et paramètres à cartographier

5.3.1. Méthodes de cartographie

Différentes méthodes de cartographie sont disponibles. Le choix de la méthode dépendra principalement du type et de l’ampleur de l’événement que l’on cherche à caractériser et du territoire considéré.

Pour connaître et définir le niveau d’exposition du territoire (par exemple en phase de diagnostic), au travers notamment de l’analyse d’événements fréquents à extrêmes ou d’événements historiques, et pour permettre le calage des modèles, les méthodes suivantes peuvent être utilisées :

- les approches naturalistes de type hydrogéomorphologiques ou géologiques (telles que données dans l’Enveloppe approchée des inondations potentielles notamment) permettent de qualifier un événement extrême sur le territoire. Ces méthodes ne permettent en revanche pas de déterminer la période de retour associée.
- la méthode historique permet de connaitre l’emprise de zones inondées pour différentes intensité d’événement à partir de la connaissance des Plus Hautes Eaux, des limites/ laisses de crue, de photographies aériennes, etc. Sur certains territoires, cette connaissance est suffisamment importante pour définir une carte des hauteurs d’eau associée à une période de retour, notamment pour les événements les plus courants.

Pour définir l’aléa en fonction des caractéristiques des mesures de protection étudiées ou des mesures de protection existantes (niveau de protection, niveau de sûreté), une analyse plus spécifique doit être menée. Plusieurs méthodes cartographiques simples en mode permanent sont disponibles :

- pour les inondations par débordement de cours d’eau, l’utilisation d’une formule simple de débit de type Manning-Strickler peut être utilisée. Elle ne permet pas d’imposer des contraintes en aval, et est donc à utiliser sur des fortes pentes.
- Pour les submersions marines,
 - la méthode de superposition niveau d’eau/topographie peut être utilisée en premier lieu. Elle peut être réalisée avec des outils SIG simples (dont certains permettent d’identifier les connexions hydrauliques avec la source de l’inondation et entre les zones basses et donc les obstacles topographiques s’opposant à l’écoulement) ;
 - en second lieu, une méthode de répartition d’un volume d’eau sur la topographie par un outil SIG (capable de réaliser des calculs de volume) des volumes d’eau entrant, préalablement estimés, notamment grâce à des formules simples de débit type Manning-Strickler en mode permanent, peut être réalisée. La surface de la zone inondée sera alors considérée comme horizontale, les zones les plus basses étant les premières remplies.
- des adaptations à ces méthodes sont possibles en identifiant les obstacles à l’écoulement par exemple.
- si ces méthodes ne conviennent pas, une modélisation numérique peut être envisagée pour le cas des inondations par débordement de cours d’eau et les submersions marines (mode permanent ou transitoire). Différents types d’outils sont à disposition : modèles hydrauliques monodimensionnels (1D), monodimensionnels avec casiers (1D casiers), bidimensionnels (2D). Ces modèles peuvent être combinés.
(1D/2D…). La mise en œuvre du modèle doit respecter l’état de l’art et des pratiques (définition des hypothèses, calage, validation…)19.

Le choix de la méthode dépendra notamment des spécificités du site (complexité de la topographie, données disponibles…). Une attention particulière doit dans tous les cas être donnée à la définition des données de forçages (connaissance des débits, données pluviométriques20, niveaux extrêmes et surcotes) qui impactent fortement le niveau de précision des résultats.

5.3.2. Paramètres de l’aléa à cartographier pour les indicateurs d’enjeux (non monétaires)

Les paramètres de l’aléa à cartographier dépendent du type d’indicateurs : indicateurs d’enjeux (non monétaires) ou indicateurs de dommages (monétaires).

Concernant le calcul des indicateurs d’enjeux, l’unique caractérisation de l’aléa nécessaire est l’emprise de la zone inondable, puisque ces indicateurs mesurent la présence ou non des enjeux en zone inondable.

5.3.3. Paramètres de l’aléa à cartographier pour les indicateurs de dommages (monétaires)

Concernant le calcul des indicateurs de dommages, les paramètres de l’aléa à caractériser dépendent directement des fonctions de dommages utilisées. Il est alors nécessaire de connaître la hauteur de submersion par rapport au terrain naturel, la durée de submersion et plus rarement les vitesses d’écoulement ou de montée des eaux (cf. encadré 3).

ENCADRE 3 : Paramètres de l’aléa nécessaires en fonction des enjeux

Pour la mise en œuvre des méthodes préconisées dans ce guide pour le calcul des dommages, les paramètres de l’aléa suivants sont nécessaires :

- la hauteur de submersion (pour tous les types de dommages) ;
- la vitesse d’écoulement exprimée en classe qualitative (pour les dommages aux activités agricoles) ;
- la durée de submersion exprimée en classe qualitative (pour tous les types de dommages) ;
- la saisonnalité de l’événement (pour les dommages aux activités agricoles).

Certaines fonctions de dommages disponibles dans la littérature nécessitent par ailleurs de qualifier la cinétique de l’inondation (crue rapide, crue lente…) qui peut être appréciée grâce au paramètre « temps d’arrivée de l’onde » par exemple.

Toutes les méthodes de cartographie de l’aléa définies en 5.3.1 ne permettent pas d’obtenir l’ensemble de ces paramètres. Le Tableau 6 ci-dessous précise les données de sortie des différentes méthodes et leur champ d’application (inondation par débordement de cours d’eau ou submersions marines).

La plupart des méthodes de cartographie permettent d’obtenir l’emprise de la zone inondable (à l’exception de la méthode historique qui ne donne parfois que des plus hautes eaux connues). La hauteur d’eau est facilement obtenue, à l’exception parfois des approches naturalistes ou historiques. La durée de submersion, la vitesse/le temps de montée des eaux ou le temps d’arrivée de l’onde ne peuvent être obtenus qu’avec l’utilisation de modélisations en régime transitoire. À défaut, ils peuvent être estimés à dires d’expert. La vitesse du courant peut être donnée par toute modélisation hydraulique.

19 Voir à ce sujet les recommandations sur l’utilisation des modélisations formulées dans la Circulaire du 16 juillet 2012 relative à la mise en œuvre de la phase « cartographie » de la directive européenne relative à l’évaluation et à la gestion des risques d’inondation (NOR : DEVP1228419C).

20 Au sujet des études hydrologiques, voir ibid.
Références

Tableau 6 : Méthodes de caractérisation de l’aléa et paramètres de sortie. Source : CGDD d’après IRSTEA.

<table>
<thead>
<tr>
<th>Approches naturalistes</th>
<th>Méthode historique</th>
<th>Superposition niveau marin/topographie</th>
<th>Répartition des volumes par outils SIG</th>
<th>Formule simple de débit</th>
<th>Modélisation hydraulique</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modèle 1D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modèle 1D casiers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modèle 2D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types d'inondation</th>
<th>Paramètres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inondations fluviales</td>
<td>Submersions marines</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5.4. Cas particulier de l’aléa submersion marine et prise en compte du recul du trait de côte

Contrairement à d’autres projets de gestion des inondations, les projets relatifs à la submersion marine ont de fortes particularités. L’espace littoral est mobile d’un point de vue hydro-sédimentaire. Les phénomènes météo-marins sont à l’origine à la fois des aléas de submersion marine et de recul du trait de côte, qui peuvent fortement interagir. Ces deux aléas doivent ainsi être étudiés conjointement si nécessaire.

L’impact du changement climatique sur les aléas littoraux est important, du fait notamment de l’élévation du niveau marin moyen de la mer. Cette variable doit être intégrée dans l’analyse.

Par ailleurs, les modes de fonctionnement hydraulique et les modes de rupture des ouvrages sont liés à des sollicitations spécifiques au milieu littoral associées notamment à l’effet des vagues. Il peut être important, dans certaines configurations, de considérer les phénomènes de franchissement en sus des phénomènes de surverse traditionnellement considérés dans ces évaluations.

La prise en compte de ces spécificités dans la caractérisation des scénarios d’aléa et dans la construction de courbes dommages-fréquences fait l’objet d’un rapport du CEREMA. Si les recommandations sont formulées dans le cadre de la réalisation d’une ACB, elles restent valables pour l’AMC dans la mesure où la construction de courbes dommages-fréquences est commune à ces deux méthodes. La méthode peut d’ailleurs s’extrapoler à la réalisation des courbes enjeux-fréquences.

6. **Boîte à outils Bénéfices** : comment évaluer les bénéfices d’un projet ?

6.1. Évaluation des dommages tangibles : construction des indicateurs de dommages monétaires

6.1.1. Les outils de l’évaluation monétaire : les fonctions de dommages

Notion de fonction de dommages

Une fonction de dommages est une fonction définie pour un enjeu (logement, entreprise, établissement public...), qui associe aux paramètres hydrologiques et/ou hydrauliques de l’inondation le montant des dommages en valeur absolue induits par l’inondation de l’enjeu. Les paramètres les plus fréquents sont la hauteur maximale de submersion, mais les fonctions de dommages peuvent dépendre d’autres paramètres comme la saison d’occurrence, la durée de submersion, la vitesse des écoulements, la cinétique de l’inondation (rapide ou lente).

Grande catégorie de fonctions de dommages

Le présent guide fournit les fonctions de dommages moyennes nationales pour les quatre catégories d’enjeux suivantes : les logements, les entreprises, les activités agricoles et les établissements publics.

Principe de construction des fonctions de dommages

Pour chaque catégorie d’enjeux, les fonctions de dommages sont construites à partir de la même méthodologie et des mêmes hypothèses. La Figure 6 détaille la méthode d’élaboration dite « à dires d’expert » ou « a priori » des fonctions de dommages en s’appuyant sur la catégorie d’enjeux « logements ».

Figure 6 : Méthode générale d’élaboration des fonctions de dommages, exemple du logement

Source : CGDD, d’après CEPRI

1. Construction d’une typologie de logements

Cette étape vise à définir les critères susceptibles de faire varier significativement les dommages aux logements et d’en tirer une typologie de logements qui servira de support à l’élaboration des courbes. Ces critères peuvent être : la surface, la présence d’un sous-sol, le nombre de pièces...)

2. Création de maquettes de logements

Cette seconde étape vise à « matérialiser » la typologie identifiée en créant des maquettes de logements. Ces maquettes sont construites afin d’être représentatives à l’échelle nationale du parc de logements.

3. Détermination des dommages aux composantes élémentaires d’un logement

Cette troisième étape consiste à déterminer tous les paramètres du calcul des dommages. Il s’agit en particulier de déterminer pour chaque composante :
- les probabilités de dommages,
- les valeurs monétaires.

Cette étape permet de construire des fonctions de dommages élémentaires (pour chaque composante d’un logement).

4. Construction des fonctions de dommages par maquette

Cette étape permet, à partir du croisement des étapes 2 et 3, de construire des fonctions de dommages pour chaque maquette de logement.

5. Adaptation des fonctions de dommages

Enfin, les fonction de dommages produites par maquette en phase 4 sont rendues opérationnelles. Afin d’être plus facilement manipulables, elles sont adaptées en fonction des bases de données disponibles pour le recensement des enjeux.

Basés sur des maquettes représentatives à l’échelle nationale, ces outils sont donc des fonctions de dommages « moyennes », « nationales ».
Fonctions de dommages moyennes et fonctions territorialisées

La démarche de construction des fonctions de dommages moyennes nationales a impliqué de formaliser des hypothèses de travail à plusieurs étapes :

- Tout d’abord, sur le choix des maquettes (étape 2). Ces maquettes sont construites pour être représentatives à l’échelle nationale. Par conséquent, ces maquettes peuvent parfois être inadaptées au territoire d’étude, du fait de spécificités locales. Ces spécificités peuvent être architecturales (organisation du bâtiment, choix des matériaux), liées au niveau de vie (concernant le mobilier), liées aux conditions climatiques locales (cultures),…
- Ensuite, sur le choix des bases de données sélectionnées pour opérationnaliser les fonctions de dommages (étape 5). Les bases de données sélectionnées sont généralement des bases de données nationales (BD SIRENE, RPG, …). Elles ont l’avantage d’être facilement accessibles, et de couvrir la France entière. Il est néanmoins possible que le territoire dispose de bases de données plus précises sur les enjeux ; ces bases de données ne sont pas directement exploitable.

En revanche, la construction de ces fonctions de dommages repose sur un certain nombre de paramètres d’entrée qui peuvent être modifiés. Il est donc donné au porteur de projet la possibilité de réexploiter la méthodologie proposée afin qu’il puisse disposer de fonctions plus adaptées à son territoire. Cette « territorialisation » des fonctions de dommages peut se faire de deux manières :

- par la création de nouvelles maquettes, représentatives du territoire. Ces maquettes pourront être croisées avec les données d’endommagement et les valeurs monétaires référencées ;
- par la modification des paramètres liés aux valeurs monétaires, (pour intégrer une éventuelle spécificité locale de certains prix de marché) ;
- par un travail d’adaptation des fonctions de dommages aux bases de données locales permettant le recensement des enjeux.

Ce travail reste lourd à mettre en œuvre et nécessite de prendre connaissance de façon détaillée du contenu des différents guides techniques mentionnés dans les parties 6.1.4, 6.1.5, 6.1.6 et 6.1.7.

Niveau de précision des fonctions de dommages

Les fonctions de dommages reposent toutes sur le paramètre d’aléa « hauteur d’eau ». Cette variable est appréciée par pas de 10 cm.

Le paramètre lié à la cinétique de l’inondation sera apprécié qualitativement d’après les connaissances tirées de retours d’expériences locaux (crue rapide/crue lente).

6.1.2. Quid des données de sinistralité dans l’évaluation des dommages monétaires ?

Dans le cas de territoires qui ont été récemment sinistrés par une inondation, il peut être tentant de faire reposer l’évaluation monétaire des dommages sur le montant des indemnisations issues des rapports d’assurance collectés sur les communes touchées.

Cette méthode n’est pas recommandée, en particulier pour les raisons suivantes :

- absence de la donnée d’aléa dans les dossiers,
- difficulté à évaluer la représentativité des dossiers d’assurance étudiés,
- écarts entre coûts indemnisés et coûts économiques (au sens de la théorie économique)².

Les dossiers sinistres spécifient très rarement l’intensité de l’aléa auquel un bien a été exposé. Lorsque cette intensité a été relevée, l’incertitude est très importante : la hauteur d’eau est-elle donnée à l’intérieur des enjeux, par rapport au plancher ou par rapport à la topographie ? Est-elle mesurée précisément ou simplement déclarative ? Les biens nécessitent donc d’être géolocalisés à l’adresse afin de pouvoir croiser les données de sinistralité avec une modélisation

La représentativité des dossiers d’assurance sélectionnés pose aussi des difficultés. Les dossiers doivent être suffisamment nombreux par classe d’intensité de l’aléa afin que la moyenne déduite des montants d’assurance soit significative. Par ailleurs, les biens ayant subi des dommages peu importants disparaissent de fait par le choix de la méthode ; en effet, seuls les dommages indemnisés apparaissent ce qui exclut les dommages dont les coûts restent inférieurs à la franchise. Les coûts des dommages pour les faibles hauteurs d’eau risquent donc par construction d’être majorés.

Enfin, les coûts indemnisés présentent plusieurs limites :

- ils correspondent généralement à des coûts de réparation donnés en TTC. Or, dans le cas des évaluations économiques, les taxes correspondent à des transferts entre acteurs et non à une perte économique nette (et donc à un coût – voir à ce sujet le paragraphe 6.1.9).
- ils correspondent généralement à des valeurs de remplacement à neuf. Or les dommages doivent être calculés en valeur « vétusté déduite » : lorsque l’élément endommagé doit être remplacé, le coût économique du dommage correspond à la valeur à neuf dépréciée (en fonction du coefficient de vétusté).

La non prise en compte de la vétusté et l’intégration des taxes dans la valeur sont par conséquent des facteurs de surestimation des dommages économiques.

Le recours à des fonctions de dommages plutôt qu’à des données de sinistralité reste donc fortement recommandé.

6.1.3. Méthode d’utilisation des fonctions de dommages

Recensement des enjeux

Le recensement et la description des enjeux touchés dépendent des fonctions de dommages qui sont retenues. Dans le présent document, les méthodes de recensement des enjeux proposées sont donc exposées en même temps que les fonctions de dommage préconisées (cf. parties 6.1.4, 6.1.5, 6.1.6 et 6.1.7).

Application des fonctions de dommages

Des fonctions de dommages moyennes sont proposées directement dans le présent guide. Il est possible pour le bureau d’études d’affiner ces fonctions de dommages (cf. partie 6.1.1), mais cela nécessitera des travaux d’adaptation conséquents.

Deux principes de base doivent guider le choix entre l’utilisation de fonctions de dommages moyennes et l’utilisation de fonctions de dommages territorialisées :

- le principe de proportionnalité : la complexité des études doit être proportionnée à l’enjeu que représente le projet (son envergure géographique, son contexte politique, son coût…) ;
- le principe de progressivité : en fonction du stade d’élaboration du projet (études d’opportunité ou études détaillées), le niveau de précision des fonctions de dommages pourra être de plus en plus grand.

Liens entre fonctions de dommages et modèle hydraulique

La variable « hauteur d’eau » est traitée dans les fonctions de dommages avec un pas de 10 cm : les fonctions sont donc caractérisées par des seuils de dommages tous les 10 cm.

Si le modèle hydraulique donne en sortie des classes de hauteur d’eau qui ne sont pas de 10 cm, les fonctions de dommages devront être ajustées. Par exemple, si le modèle donne en sortie des classes de 50 cm, les dommages devront être moyennés par classe de 50 cm.

Actualisation des fonctions de dommages

Selon la catégorie d’enjeux, les dommages ne sont pas exprimés en euros de la même année. Afin de pouvoir traiter les différents indicateurs de dommages monétaires de façon comparable, il est nécessaire que les dommages soient exprimés en euros de la même année, le plus pertinent étant de les exprimer en euros de l’année en cours.

Une actualisation des valeurs est donc nécessaire. Pour cela, il est nécessaire d’opérer *a minima* une déflation, c’est-à-dire d’annuler l’effet de l’inflation, en utilisant :
soit l’indice des prix à la consommation de l’INSEE;23,
soit un indice des coûts de la construction (FFB ou INSEE).

Avec le temps, les fonctions de dommages proposées dans le présent guide deviendront obsolètes : il deviendra alors nécessaire de réaliser une réactualisation. Elle consisterait à intégrer l’évolution de l’habitat, de l’entreprise agricole ou non agricole. Par exemple, les entreprises auront très certainement évolué d’ici deux ou trois décennies en matière de chiffre d’affaires, de capital, de mode de fonctionnement... Ainsi une même inondation n’impactera pas, d’un point de vue monétaire, une même entreprise de la même façon. Cette évolution devrait être prise en compte dans la réactualisation des courbes.

6.1.4. Fonctions de dommages aux logements

Caractérisation des logements

Deux types de fonctions de dommages aux logements sont proposés : des fonctions de dommages au bâti des logements (immobilier) et des fonctions de dommages au mobilier.

Le guide propose des fonctions de dommages au bâti pour les catégories de logements suivantes :

- logement individuel sans étage,
- logement individuel avec étage,
- logement collectif,

...ainsi que des fonctions de dommages à appliquer séparément pour les sous-sols :

- sous-sol individuel,
- sous-sol d’un immeuble (cave et garage).

Les fonctions de dommages au mobilier concernent les catégories suivantes :

- mobilier d’un logement individuel sans étage,
- mobilier d’un logement individuel avec étage,
- mobilier d’un logement en collectif.

Les sous-sols modélisés ne sont pas meublés dans la mesure où il s’avère difficile d’évaluer un contenu « standard » pour les caves et les garages.

Ces fonctions de dommages sont présentées soit à l’entité de bien, soit en surfacique. L’utilisateur peut choisir le format de courbe qui lui convient le mieux, en fonction de la taille de son territoire et des moyens de recensement des enjeux dont il dispose.

Fonctions de dommages à l’entité de biens

Ces fonctions s’appliquent pour chaque logement recensé et nécessitent donc obligatoirement un décompte des logements sur le territoire étudié. Elles sont exprimées en euros 2011.

L’application de ces fonctions nécessite de caractériser chaque logement en fonction des critères suivants : logement individuel ou collectif (critère 1), présence ou non d’un étage pour le logement individuel (critère 2), présence ou non d’un sous-sol pour le logement (critère 3).

Diverses méthodes de recueil des critères (1), (2) et (3) peuvent être appliquées ; une de ces méthodes est proposée ci-après :

Supports et données préalables nécessaires :
BD TOPO ; ORTHOPHOTO. À l’échelle de la zone d’inondation maximale.

Étape 1 : Identification des bâtiments d’habitation
Un tri dans la BD TOPO est effectué afin de mettre de côté tous les bâtiments n’étant pas des habitations. On écarte ainsi le bâti dont la superficie est inférieure à 30 m² au sol, seuil arbitraire. En effet, on considère que cette surface est trop petite pour représenter des bâtiments à usage d’habitation.

Étape 2 : Distinction du bâti en collectif de l’individuel (critère 1)
On considère que le bâti individuel a une superficie inférieure à 180 m² ; il s’agit d’un seuil arbitraire. Au-delà, il s’agit de bâti collectif. Cette méthode permet une première sélection grossière qui peut être complétée par une approche plus fine via un travail de photo-interprétation ou d’enquête terrain. En effet par exemple, l’habitat mitoyen le cas échéant, peut devenir avec cette méthode automatique de différenciation, similaire à de l’habitat collectif. Il peut donc être nécessaire de faire une correction au cas par cas de cette distinction de l’habitat collectif de celui de l’individuel.

Enfin, à l’occasion de ce tri, on enlèvera ce qui ne relève pas de l’habitat strict, grâce à l’examen des photos aériennes (exemples : les garages et les installations agricoles).

Étape 3 : Dénombrement des logements individuels (maisons individuelles et individuel mitoyen)
Les maisons comportent un unique logement. Le dénombrement des logements en habitat mitoyen passe tout d’abord par un travail de photo-interprétation, on évalue au cas par cas. Ce travail est ensuite vérifié sur le terrain.

Étape 4 : Dénombrement des logements dans l’habitat collectif
Une **visite du terrain** : il s’agit de parcourir intégralement la zone d’étude. On relève les paramètres suivants pour chaque habitat individuel isolé, par lot d’habitat individuel mitoyen et enfin par polygone de la BD TOPO pour l’habitat collectif :
- comptabilisation du nombre total de logements collectifs : elle s’effectue par comptage des boîtes aux lettres ;
- évaluation du nombre d’étages moyen : afin de préciser les données de hauteur du bâtiment présente sur la BD TOPO et être en mesure de préciser le nombre de logements en rez-de-chaussée (c’est-à-dire le nombre de logements collectifs exposés directement).

Étape 5 : Identification des critères (2) et (3)
- évaluation du nombre d’étage : à travers la **visite de terrain** ;
- estimation de la présence de sous-sol : idem que pour le critère précédent ;

N.B. : Un critère supplémentaire peut être utile à recueillir. Il s’agit de la hauteur du plancher du rez-de-chaussée : elle peut être estimée en comptant le nombre de marches des bâtiments ou par lot de bâtiments ; la hauteur d’une marche peut être considérée comme correspondant à une mesure de 16 centimètres (observation terrain et normes d’accessibilité pour les équipements publics).

Fonctions de dommages surfaciques
Afin d’être plus facilement exploitables sur les territoires très vastes, les fonctions de dommages à l’entité de bien ont été transformées en fonction de dommages surfaciques (en euros 2011 par m²). Ces fonctions sont à croiser avec la surface au sol habitable. A défaut de disposer de cette surface au sol habitable, l’impression au sol de la BD TOPO pourrait être utilisée après exclusion des surfaces de garages. Ceci implique que l’on considère dans le calcul une surface habitable majorée de l’épaisseur des murs et des débordements de toits.

L’ensemble des fonctions de dommages aux logements est donné dans les Annexes techniques, partie 2. Un tableur contenant les données à mobiliser est par ailleurs téléchargeable.
Mode d’emploi des fonctions et paramètres hydrauliques nécessaires

Figure 7 : Mode d’emploi des fonctions de dommages aux logements. Source : CEPRI.

A noter : les dommages ont été physiquement appréciés par seuil de 50 cm. Les points intermédiaires des fonctions de dommage ont été construits par interpolation linéaire tous les 10 cm et ont été validés par des experts comme étant réalisistes.

La mise en œuvre d’une courbe avec ou sans déplacement du mobilier ne nécessite pas forcément des investigations complémentaires. Il est possible de prendre en compte les deux hypothèses dans les évaluations et de proposer ainsi un encadrement des résultats (moyennant une transparence sur les hypothèses étudiées). Cependant, on peut aussi établir un parallèle entre les hypothèses avec ou sans déplacement, avec la présence d’au moins un étage lorsque les hauteurs d’eau maximales sont inférieures à 2,5 mètres.

Un travail complémentaire est en cours sur les logements, visant à proposer aux utilisateurs un catalogue plus important de fonctions de dommages aux logements à partir d’un plus grand nombre de maquettes.

Guide technique de référence

L’ensemble des travaux d’évaluation des dommages aux logements est compilé dans un guide technique, dont les références sont les suivantes :

Le guide détaille la méthode de construction des maquettes et des fonctions ainsi que les hypothèses sur lesquelles le travail repose.
6.1.5. Fonctions de dommages aux activités agricoles

Caractérisation de l’activité agricole

L’activité agricole est schématiquement représentée par le bâti, le matériel et les stocks agricoles, le bétail et les cultures.

Fonctions de dommages au bâti, au matériel et aux stocks agricoles

Le guide ne présente pas de fonctions de dommages opérationnelles pour évaluer le coût d’une inondation sur ces trois composantes d’une activité agricole. La difficulté réside en effet dans la constitution de typologies de bâtiments agricoles, l’identification, la quantification et la localisation du matériel et des stocks dans et dehors des bâtiments.

Lorsque ces enjeux semblent être importants sur le territoire, il est recommandé :

- soit de s’appuyer sur les travaux antérieurs : les courbes AScA du Rhône développées pour les sièges d’exploitation (données en k€ par ha) ;
- soit de produire des montants de dommages sur la base des éléments d’endommagement qualitatifs et quantitatifs fournis dans le guide technique de l’IRSTEA (cf. annexes C-6, C-7 et C-8)24.

Fonctions de dommages au bétail

De même que pour les dommages au bâti, au matériel et aux stocks agricoles, les dommages au bétail n’ont pas pu être traduits en fonctions opérationnelles. Les pratiques des agriculteurs concernant l’évacuation du bétail n’ont en effet pas pu être formalisées.

Dans le cas où ces enjeux semblent significatifs, il est proposé :

- soit de s’appuyer sur les travaux antérieurs (courbes de la Loire moyenne pour l’élevage en k€1999 par tête de bétail) ;
- soit de reconstituer des montants de dommages sur la base des travaux récents menés et compilés dans le guide technique de l’IRSTEA25 (annexe C-9). Des fonctions de pertes d’animaux sont en effet proposées dans la situation d’un bétail en enclos (animaux d’élevage) et permettent, par croisement avec des coûts moyens par tête de bétail, de déduire des montants de dommages. A noter que ces dommages constituent une borne maximale car caractérisent une situation sans évacuation du bétail.

Fonctions de dommages aux cultures

Les fonctions de dommages proposées sont surfaciques. Les dommages sont donnés en euros 2013 par ha. 14 catégories de cultures sont caractérisées :

- Blé tendre,
- Maïs grain et ensilage,
- Orge,
- Autres céréales,
- Colza,
- Tournesol,
- Autres oléagineux,
- Autres cultures industrielles,
- Fourrage,
- Prairies permanentes,
- Prairies temporaires,
- Arboriculture et vergers,
- Vignes,
- Légumes- fleurs.

L’ensemble de ces fonctions de dommages aux cultures est donné dans les Annexes techniques, partie 2. Un tableur contenant les données à mobiliser est par ailleurs téléchargeable.

25 Ibid.
Ces fonctions « moyennées » sont conçues pour être croisées avec les surfaces culturales données dans le Registre Parcellaire Graphique (RPG). Le RPG est un système d’information géographique permettant l’identification des parcelles agricoles en France. Il est mis à jour chaque année avec les dossiers de déclaration de surfaces adressés par les agriculteurs à l’administration. Il est important de noter, que le RPG n’est pas exhaustif en termes d’occupation du sol. En effet, seuls les agriculteurs bénéficiant d’aides agricoles déclarent leurs parcelles. Lors de l’utilisation de cette base de données pour l’occupation du sol agricole dans des régions où les cultures non aidées occupent une place importante (notamment la vigne), des précautions doivent être prises afin de s’assurer qu’un taux de couverture satisfaisant est obtenu avec le RPG. Pour cela, des experts des chambres d’agriculture peuvent être consultés.

Ces 14 fonctions de dommages ne couvrent pas toutes les catégories du RPG. Pour les catégories non couvertes, les recommandations sont les suivantes (Tableau 7) :

Tableau 7 : Recommandations pour les catégories du RPG non couvertes par une fonction de dommages. Source : CGDD d'après IRSTEA.

<table>
<thead>
<tr>
<th>Autres catégories du RPG</th>
<th>Recommandations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autres gels</td>
<td>Ces surfaces sont a priori très peu sensibles aux inondations, des dommages nuls peuvent donc leur être associés.</td>
</tr>
<tr>
<td>Estives-Landes</td>
<td>Sans autre précision sur l’occupation de ces surfaces, les dommages peuvent être estimés en appliquant une fonction de dommage correspondant à la moyenne pondérée par les surfaces des fonctions des autres catégories du RPG disposant d’une courbe dédiée.</td>
</tr>
<tr>
<td>Pas d’information</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du blé avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour la culture du riz et pour les cultures de semences à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Divers</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du prunier avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour ces cultures à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Riz</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du colza avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour ces cultures à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Semences</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du riz avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour les cultures de semences à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Fruits à coque</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du prunier avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour ces cultures à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Oliviers</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du blé avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour la culture du riz et pour les cultures de semences à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Protéagineuses</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du riz avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour les cultures de semences à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Légumineuses à grain</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du colza avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour ces cultures à rechercher par l’utilisateur).</td>
</tr>
<tr>
<td>Plantes à fibres</td>
<td>Il est recommandé d’utiliser les fonctions d’endommagement du riz avec des données agro-économiques appropriées (calendrier, rendement, prix de vente et charges pour les cultures de semences à rechercher par l’utilisateur).</td>
</tr>
</tbody>
</table>

Point de vigilance :

Ces fonctions sont des fonctions moyennes nationales, dans la mesure où la répartition des types de cultures dans chaque catégorie est basée sur des données nationales (par exemple, la catégorie « arboriculture » repose sur un certain pourcentage de pommiers, de cerisiers, etc., apprécié à l’échelle nationale). Bien évidemment, ce pourcentage n’est pas forcément pertinent localement. Par ailleurs, les données agro-économiques qui ont permis la construction de ces fonctions (prix de vente, charges, calendriers culturaux, rendement...) correspondent aussi à des valeurs moyennes pour la France.

Les bureaux d’études le souhaitant ont la possibilité de produire des fonctions de dommages territorialisées. Ils doivent pour cela disposer de la typologie d’occupation du sol sur le territoire d’étude ainsi que des données agro-économiques locales. Ces données peuvent être introduites dans le modèle qui a produit les fonctions de dommages moyennes nationales. Tous les scripts et toutes les données de base nécessaire au calcul des fonctions de dommage sont disponibles sur demande auprès d’IRSTEA. Ils seront accompagnés d’un guide simplifié pour la prise en main du modèle. Il est vivement conseillé au préalable de lire le guide technique de référence sur les dommages au secteur agricole.

26 Elles peuvent cependant être utilisées avec une autre base SIG si la typologie convient.
Paramètres hydrauliques nécessaires à l’utilisation de ces fonctions

- La hauteur d’eau : les fonctions sont données par pas de 10 cm ce qui correspond au niveau de précision maximal des dommages.
- La durée de submersion appréciée en fonction des classes suivantes (source : IRSTEA, modifiable à la demande) :

<table>
<thead>
<tr>
<th>Classe de durée</th>
<th>Min (jour)</th>
<th>Max (jour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>courte</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>moyenne</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>longue</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>très longue</td>
<td>11</td>
<td>20</td>
</tr>
</tbody>
</table>

- La vitesse du courant appréciée en fonction des classes suivantes (source : IRSTEA) :

<table>
<thead>
<tr>
<th>Niveau de courant</th>
<th>Description</th>
<th>Vitesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faible</td>
<td>Pas d’érosion du sol. Pas d’arrachage de cultures lorsqu’elles sont déjà enracinées. Pas d’endommagement des équipements dans les parcelles. Eau peu chargée en débris.</td>
<td>0 à 0,5 m.s⁻¹</td>
</tr>
<tr>
<td>Moyen</td>
<td>Érosion superficielle du sol. Arrachage des cultures annuelles. Endommagement des équipements fragiles dans les parcelles. Eau chargée en petits et moyens débris.</td>
<td>0,5 à 1 m.s⁻¹</td>
</tr>
<tr>
<td>Fort</td>
<td>Érosion localement importante (ravines). Arrachage des cultures pérennes. Endommagements des équipements dans les parcelles. Eau chargée en moyens et gros débris.</td>
<td>1 à 2 m.s⁻¹</td>
</tr>
</tbody>
</table>

- La saison définie de la façon suivante (source : IRSTEA, modifiable à la demande) :

<table>
<thead>
<tr>
<th>Classe de durée</th>
<th>Début (semaine)</th>
<th>Fin (semaine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printemps</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>Été</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>Automne</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>Hiver</td>
<td>1</td>
<td>13</td>
</tr>
</tbody>
</table>

Guide technique de référence

L’ensemble des travaux d’évaluation des dommages aux activités agricoles est compilé dans un guide technique, dont les références sont les suivantes :

Le guide détaille la méthode de construction des fonctions et les hypothèses sur lesquelles le travail repose.

6.1.6. Fonctions de dommages aux entreprises

De nouvelles fonctions de dommages aux entreprises en construction...

Des travaux sont en cours pour produire des fonctions de dommages aux entreprises. À l’instar des travaux menés sur les logements et les activités agricoles, les travaux sur les entreprises aboutiront à de nouvelles fonctions de dommages pour 16 catégories d’activités. La méthodologie permettra de proposer des fonctions moyennes nationales mais donnera aussi
les informations élémentaires pour permettre la construction de fonctions territorialisées (composantes des différentes maquettes, endommagements élémentaires, coûts élémentaires...).

Les activités étudiées sont les suivantes :

- Activités avec nécessité de stockage (Commerce de gros, entrepôts);
- Artisans alimentaires (métiers de bouche);
- Banques;
- Bureau de "profession libérale";
- Bureau à forte densité informatique;
- Camping;
- Commerce de détail en centre-ville;
- Commerce de détail en zone d’activités;
- Hôtel et hébergement de courte durée;
- Industries manufacturières;
- Laboratoire, Recherche;
- Réparation et installation de machines et d’équipement;
- Restauration;
- Station-service;
- Transport;
- Vente, réparation, location de véhicules.

A chaque catégorie sont associés des codes de la Nomenclature des Activités Françaises (NAF) de l’INSEE. Cette structure par code NAF permettra l’utilisation de ces fonctions avec la BD SIRENE.

Ces fonctions sont en construction. Elles seront mises en ligne dès que le travail d’évaluation des dommages aux activités économiques mené dans le cadre du groupe de travail national AMC sera terminé.

Guide technique de référence

L’ensemble des travaux d’évaluation des dommages aux activités économiques sera compilé dans un guide technique :

Le guide détaillera la méthode de construction des fonctions et les hypothèses sur lesquelles le travail repose.

Dans l’attente de la finalisation des nouvelles fonctions aux entreprises...

Les fonctions proposées dans le cadre du Plan Rhône ont été reprises et actualisées en euros 2013. Ces fonctions sont fournies dans les Annexes techniques, partie 2. Un tableur contenant les données à mobiliser est par ailleurs téléchargeable.

Paramètres hydrauliques nécessaires à l’utilisation de ces fonctions

- La hauteur d’eau : en fonction des classes suivantes : \(< 80 \text{ cm} \) ou \(> 80 \text{ cm} \),
- La durée de submersion en fonction des classes suivantes : \(< 24 \text{ heures} \) ou \(> 24 \text{ heures} \),
- Le temps d’intervention en fonction des classes suivantes : \(< 48 \text{ heures} \) ou \(> 48 \text{ heures} \).

6.1.7. Fonctions de dommages aux établissements publics

Les fonctions de dommages proposées sont surfaciques (dommages en euros 2011 par m²). Six catégories-types d’établissements font l’objet d’une fonction de dommages chacune :

- Établissements scolaires,
- Établissements d’incendie et de secours,
Hébergements,
Centres techniques municipaux,
Mairies et centres administratifs,
Police/gendarmerie.

L’ensemble de ces fonctions de dommages aux établissements publics est donné dans les Annexes techniques, partie 2. Un tableur contenant les données à mobiliser est par ailleurs téléchargeable.

Point de vigilance :

Ces fonctions présentent des limites : elles découlent d’une part de la précision des diagnostics (manquements dus à des parties d’établissements non visitables ou non visitées, données non fournies au diagnostiqueur ou erronées…) et d’autre part à l’échantillon limité de diagnostics (de 1 à 4 selon les catégories d’établissements).

Par ailleurs, les diagnostics de vulnérabilité ont apporté une information sur les dommages par pas de 50 cm. Les points intermédiaires, tous les 10 cm, ont été construits par interpolation linéaire.

Paramètres hydrauliques nécessaires à l’utilisation de ces fonctions

- La hauteur d’eau : les fonctions sont données par pas de 10 cm.
- La durée de submersion en fonction des classes suivantes : < 48 heures ou > 48 heures.

Recommandations pour les établissements publics qui ne disposent pas d’une fonction de dommages

En l’absence de courbes de dommages spécifiques pour toutes les catégories d’établissements publics, il peut être proposé de rattacher chaque établissement à une autre catégorie d’établissement public ou d’entreprise que l’on peut considérer comme proche. Enfin, certaines catégories d’établissement, en raison de leur nature particulière et de leurs spécificités devraient être abordées à travers la réalisation de diagnostics individuels.

Les correspondances pour les établissements n’ayant pas encore fait l’objet de travaux spécifiques sont résumées dans le

Référence des travaux
Cette analyse des dommages aux établissements publics a été menée par le CEPRI dans le cadre des travaux du groupe de travail national sur l’AMC des projets de protection contre les inondations.

6.1.8. Fonctions de dommages pour les submersions marines
Des travaux complémentaires ont été menés pour évaluer dans quelle mesure les submersions marines pouvaient causer des dommages plus importants que les inondations fluviales. Ces travaux ont montré l’existence d’écart significatifs entre les montants de dommages causés par une submersion marine et ceux causés par des inondations en eau douce.

En effet, le caractère salin de l’eau d’une submersion marine implique des pratiques spécifiques des assureurs (remplacement systématique des éléments du second œuvre et des équipements fixes) qui accentuent sensiblement le montant des dommages au bâti par rapport à des dommages en eau douce (pour lesquels cette précaution n’est pas prise).

Pour plus de détails concernant les travaux menés sur les dommages causés par les submersions marines, il est conseillé de lire le document ad hoc du CEPRI28, élaboré en collaboration avec l’auteur d’une thèse sur les dommages aux habitations causés par les submersions marines29.

6.1.9. Autres dommages qui peuvent être intégrés dans l’analyse monétaire
Des dommages, autres que ceux aux logements, aux entreprises, aux activités agricoles ou aux établissements publics, peuvent être intégrés monétairement dans l’analyse. On peut considérer par exemple les dommages directs aux réseaux. La connaissance des coûts des dommages pourra alors s’appuyer sur des coûts de réparation tirés de retours d’expérience d’événements passés (coûts de remise en état d’une voirie par exemple). Il sera nécessaire de donner clairement accès à la méthode développée et aux données mobilisées.

6.1.10. La question des transferts : les dommages à ne pas intégrer dans l’analyse
L’analyse menée, on l’a vu dans le cadre de la partie 4.3.2., doit avoir une portée nationale : c’est la pertinence du projet pour la société française qui est regardée. Cette hypothèse de travail a des conséquences notables sur les bénéfices, donc les dommages, qui peuvent être intégrés dans l’analyse. En effet, un certain nombre de coûts ou de bénéfices que l’on intégrerait intuitivement sont en réalité des transferts entre agents économiques : le « gain » pour un agent qui reçoit le transfert étant compensé par la « perte » du payeur, l’analyse à l’échelle nationale concluant alors à la nullité de la somme totale. Autrement dit, dans ces situations, le projet ne produit aucune plus-value ou aucune moins-value, mais répartit différemment les pertes et les gains par rapport à la situation de référence.

Ainsi, toute taxe constitue un transfert entre individus : la non-perception par les collectivités d’une taxe du fait d’inondations ne peut donc constituer un dommage dans l’analyse. A noter de ce fait que les dommages monétaires et les coûts doivent nécessairement être exprimés en euros hors taxe. Les fonctions de dommages proposées dans ce guide sont ainsi données en euros hors taxe.

La perte d’attractivité touristique d’un territoire du fait d’inondations peut de même être généralement considérée comme un transfert à l’échelle nationale ; en effet, les touristes saisonniers peuvent généralement modifier leur destination de vacances sans que cela réduise sensiblement leur bien-être.

ILLUSTRATION 6 : La question de la perte d’attractivité touristique (extraits choisis)

Exemple 1 :
« La submersion marine [d’un territoire, telle que celle causée par Xynthia] a un impact direct sur l’activité touristique. Cet impact compromet ainsi l’ensemble des activités de loisirs liées à la mer : interdiction des activités nautiques en contact avec l’eau, diminution de la fréquentation des plages à cause de la fermeture de la baignade, diminution des escales au port de plaisance, réduction globale de l’attract du territoire. Sur ce dernier point, la Région a du dépenser 230 000 € au titre de la campagne publicitaire menée en 2010 suite à Xynthia, pour la promotion du littoral durant l’avant-saison touristique. Le seul but étant de maintenir l’activité touristique après un événement dégradant pour l’image du territoire. »

Exemple 2 :
« Nous n’avons pas pris en considération dans le calcul les pertes d’exploitation liées à la baisse de la fréquentation touristique suite à Xynthia (la baisse de fréquentation touristique de l’île a été évaluée à 10 % l’été ayant suivi Xynthia). Notre évaluation peut donc être considérée comme une limite inférieure. »

La perte de l’attrait touristique d’un territoire ne peut être considérée comme un dommage dans l’AMC. En effet, on peut raisonnablement considérer que les touristes de la région concernée ont pu se reporter vers une autre destination touristique, et que l’activité touristique, réduite sur ces deux territoires, s’est au contraire accrue dans les communes littorales non touchées par Xynthia.
6.2. Évaluation des dommages intangibles : construction des indicateurs d’enjeux

6.2.1. Indicateurs d’enjeux principaux

Tableau 9 : Indicateurs d’enjeux principaux. Source : CGDD

<table>
<thead>
<tr>
<th>Type de conséquences</th>
<th>N°</th>
<th>Indicateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santé humaine</td>
<td>P1</td>
<td>Nombre de personnes habitant en zone inondable et part communale.</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>Part des personnes habitant dans des logements de plain-pied en zone inondable par commune.</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>Capacités d’accueil des établissements sensibles en zone inondable.</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>Part de bâtiments participant directement à la gestion de crise hors et en zone inondable.</td>
</tr>
<tr>
<td>Economie</td>
<td>P5</td>
<td>Trafic journalier des réseaux de transport en zone inondable.</td>
</tr>
<tr>
<td></td>
<td>P6</td>
<td>Part d’entreprises aidant à la reconstruction après une inondation dans les communes exposées.</td>
</tr>
<tr>
<td></td>
<td>P7</td>
<td>Nombre d'emplois en zone inondable.</td>
</tr>
<tr>
<td>Environnement</td>
<td>P8</td>
<td>Stations de traitement des eaux usées en zone inondable : charge journalière entrante en moyenne annuelle.</td>
</tr>
<tr>
<td></td>
<td>P9</td>
<td>Déchets : capacités de traitement et de stockage en zone inondable.</td>
</tr>
<tr>
<td></td>
<td>P10</td>
<td>Nombre de sites dangereux en zone inondable.</td>
</tr>
<tr>
<td>Patrimoine</td>
<td>P11</td>
<td>Nombre de bâtiments patrimoniaux et de sites remarquables en zone inondable.</td>
</tr>
</tbody>
</table>

A noter : l’indicateur P2 est principalement important pour les territoires soumis à des inondations rapides.

6.2.2. Indicateurs d’enjeux secondaires

La liste d’indicateurs peut être complétée par l’analyse d’autres indicateurs, jugés secondaires. La liste est donnée dans le Tableau 10. Pour rappel, ces indicateurs sont jugés secondaires :

- soit parce qu’ils correspondent à un objectif du projet jugé secondaire,
- soit parce que leur calcul nécessite un travail jugé trop lourd au regard de leur plus-value.

Tableau 10 : Indicateurs d’enjeux secondaires. Source : CGDD

<table>
<thead>
<tr>
<th>Type de conséquences</th>
<th>N°</th>
<th>Indicateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santé humaine</td>
<td>S1</td>
<td>Alimentation en eau potable : nombre de personnes desservies par des captages situés en zone inondable.</td>
</tr>
<tr>
<td></td>
<td>S2</td>
<td>Capacités d’hébergement communales hors zone inondable en cas de nécessité d’évacuation.</td>
</tr>
<tr>
<td>Economie</td>
<td>S3</td>
<td>Nombre de postes « énergie et télécommunication » en zone inondable.</td>
</tr>
<tr>
<td>Environnement</td>
<td>S4</td>
<td>Espaces naturels protégés : superficie d’espaces protégés en zone inondable.</td>
</tr>
<tr>
<td>Patrimoine</td>
<td>S5</td>
<td>Nombre annuel de visiteurs dans les musées situés en zone inondable.</td>
</tr>
</tbody>
</table>
6.2.3. Modalités de calcul et représentation cartographique des indicateurs d’enjeux

Un enjeu est considéré en zone inondable dès qu’il est exposé à une hauteur d’eau \(H > 0 \).

Chaque indicateur est calculé pour le scénario de dimensionnement en situation AVANT projet (scénario de référence) et en situation APRES projet (scénario aménagé). Le différentiel est calculé.

De manière générale, il convient de vérifier que les données disponibles dans les bases consultées sont bien à jour. Lorsque cela est possible, une enquête de terrain permet de valider ces données et de les compléter.

Dans les Annexes techniques, partie 1, chaque indicateur (principal et secondaire) fait l’objet d’une fiche méthode précisant ses modalités de calcul et de représentation cartographique. L’exemple de représentation cartographique présenté pour chaque fiche indicateur a été réalisé sur un cas fictif. Il est vivement recommandé d’utiliser la sémiologie proposée.

Figure 8 : Exemples de représentation cartographique des indicateurs (cas de l’indicatrice P1). Source : CGDD
Cas particulier des enjeux de surface importante :

Pour les enjeux de surface importante (superficie d’espaces protégés par exemple), la hauteur d’eau calculée par comparaison entre la cote de la ligne d’eau et la cote du terrain naturel peut présenter de fortes variations selon le point considéré (cf. schéma ci-dessous). Le phénomène est accentué lorsque l’enjeu se trouve à cheval sur plusieurs casiers hydrauliques. La hauteur d’eau moyenne sur l’emprise de l’enjeu considéré n’est alors plus nécessairement une bonne approximation. Il peut donc devenir nécessaire de redécouper artificiellement l’enjeu selon les différents casiers hydrauliques et selon les différentes enveloppes de d’inondations considérées.

Cas particulier des enjeux de surface importante. Source : CGDD

La représentation cartographique des enjeux pour le scénario de dimensionnement du projet sans aménagement (déjà évoqué dans le paragraphe 4.2.1) et avec aménagement permet de compléter l’information apportée par la représentation cartographique des indicateurs d’enjeux sur la localisation géographique et la densité des enjeux protégés grâce au projet.

Une séméiologie est proposée dans les Annexes techniques, partie 3 (« représentations cartographiques des enjeux du territoire »).
7. « Boîte à outils Coûts » : comment évaluer les coûts d’un projet ?

7.1. Typologie des coûts associés à un projet

7.1.1. Coûts d’investissement

Ces coûts rassemblent l’ensemble des dépenses engagées par le maître d’ouvrage public depuis l’origine du projet, jusqu’à la conception, la réalisation et la mise en service de l’aménagement. Ils comprennent :

- les coûts du foncier (acquisition, indemnisation, démolition, dépollution, viabilisation),
- les coûts d’études, et les coûts d’accompagnement de la mission de maîtrise d’ouvrage (assistance à maîtrise d’ouvrage, maîtrise d’œuvre, contrôles, etc.),
- les coûts des travaux et les coûts d’équipement.

En fonction du stade d’élaboration du projet, des données plus ou moins précises sur le coût des travaux sont disponibles. Des guides à l’attention des maîtres d’ouvrage, des maîtres d’œuvre et des experts chargés de l’évaluation des projets permettent d’aider à l’estimation des coûts pour une opération future :

- L’étude de coût des protections contre les inondations fluviales (CETMEF, 2013),
- L’étude de coût des protections contre les inondations torrentielles (ONF-RTM, à venir),
- L’étude de coût des protections contre les submersion marines (CETMEF, à venir).

7.1.2. Coûts d’entretien

Ce sont des coûts qui vont s’étaler au cours du temps. Ces coûts rassemblent l’ensemble des coûts différés de l’opération, c’est-à-dire toutes les dépenses effectuées après la mise en service du bâtiment/de l’équipement/du dispositif et qui incombent tant au propriétaire, qu’aux utilisateurs. Ils comprennent :

- les coûts de maintenance (entretien courant, maintenance préventive, maintenance curative, gros entretien et renouvellement des équipements),
- les coûts d’exploitation (consommation d’énergie et d’autres fluides, gestion des déchets, dépenses nécessaires au fonctionnement des activités hébergées dans le bâtiment),
- le coût des travaux liés à des modifications fonctionnelles de l’aménagement,
- le coût de pilotage de l’ensemble de l’exploitation.

À noter : il est prévisible que dans certaines configurations (notamment hydro-sédimentaires), les coûts associés à certaines mesures s’accroissent au fil du temps. Cette augmentation des dépenses d’entretien peut être liée à la réduction de la disponibilité des ressources en matériaux (notamment en raison de problème d’approvisionnement en sédiments pour les mesures de type « rechargement de plage » par exemple). Les capacités techniques à effectuer l’entretien sont donc systématiquement à évaluer et l’accroissement potentiel du coût devra être intégré dans l’analyse.

7.1.3. Coûts de réparation

La possibilité de survenue d’un événement entraînant des dommages sur l’ouvrage est également à prendre en compte dans l’analyse. Ces dommages à l’ouvrage nécessitent des réparations qui ne sont pas considérées dans l’entretien courant de l’ouvrage.

Dans une première approche, la modélisation suivante des coûts de réparation peut être effectuée :

- Tout événement supérieur à l’événement de dimensionnement de l’ouvrage génère des entrées d’eau (défaillance fonctionnelle) puis une détérioration (défaillance structurelle) de l’ouvrage. La détérioration survient pour un événement correspondant au niveau de sûreté de l’ouvrage. Le comportement de l’ouvrage est donc binaire : en dessous du niveau de sûreté, l’ouvrage remplit son rôle et seul un entretien courant est nécessaire. Tout événement d’intensité supérieure cause des détériorations à l’ouvrage et implique des réparations, voire une reconstruction.
Pour tenir compte de la probabilité d’occurrence des événements générant la détérioration de l’ouvrage, un coût moyen annuel de réparation (CMA) peut être calculé. Celui-ci correspond à la somme des coûts de réparation et de reconstruction associés à chaque événement de période de retour supérieure ou égale à l’événement correspondant au niveau de protection, pondérés par leur probabilité d’occurrence (voir Figure 9 ci-dessous, aire en bleue). Dans la mesure où il reste complexe d’évaluer les coûts de réparation associés aux différents scénarios d’aléa, plusieurs hypothèses simplificatrices peuvent être prises (voir Figure 9, aire hachurée) :

- Il est possible de s’intéresser uniquement aux détériorations substantielles sur l’ouvrage, c’est-à-dire celles qui nécessitent une réparation conséquente qui se rapproche d’une reconstruction.

- Le coût des réparations substantielles pourra alors être approximé par un coût de construction de l’ouvrage (à défaut de données plus précises tirées par exemple de retours d’expériences).

- L’événement impliquant des réparations substantielles sera identifié au cas par cas en fonction du type d’ouvrage étudié : il pourra s’agir de l’événement correspondant au niveau de sûreté de l’ouvrage si on dispose de cette information, au niveau de protection de l’ouvrage dans le cas de digues en terre30, ou encore à l’événement pour lequel l’ouvrage a un impact hydraulique limité.

7.2. Synthèse des coûts et mises en garde : « coûts économisés » et « dommages ajoutés »

Attention : lorsque l’on parle de coût du projet, il s’agit bien du surcoût causé par les nouvelles opérations par rapport aux éventuels coûts dépensés en situation de référence.

Les coûts à considérer dans l’analyse peuvent être synthétisés dans le Tableau 11 ci-dessous. Au niveau des lignes apparaissent les coûts d’investissement et au niveau des colonnes les coûts annuels différés associés à certains de ces coûts d’investissement.

30 Pour les digues en terre, le niveau de sureté peut être confondu avec le niveau de protection car la surverse peut causer rapidement des défaillances structurelles.
Ce tableau met en évidence certains coûts « spécifiques » qui nécessitent une attention particulière : le cas des coûts économisés grâce au projet (coûts négatifs) et le cas des dommages ajoutés à cause du projet (bénéfices négatifs).

7.2.1. Coûts économisés (coûts négatifs)

Certains travaux se traduisent en réalité par une économie des coûts d’entretien et des coûts de réparation : c’est le cas lorsque le projet comporte la suppression d’un ouvrage existant qui faisait l’objet d’entretien et de réparations dans la situation de référence.

Dans cette même perspective, certains travaux n’impliquent pas nécessairement de coûts d’entretien et de réparation supplémentaires et un bilan doit être fait entre la situation avec projet et la situation de référence (dans le cas par exemple de travaux sur un ouvrage existant).

7.2.2. Dommages ajoutés (bénéfices négatifs)

Certaines mesures peuvent potentiellement aggraver l’aléa sur certaines zones géographiques, soit en augmentant la ligne d’eau dans certains casiers hydrauliques, soit en créant de nouvelles zones inondables (surinondation). Ces mesures augmentent donc sur certaines zones les conséquences potentielles des inondations et génèrent un « coût » qui doit être intégré dans l’analyse.

- Lorsque les mesures induisent une zone de surinondation, certains impacts ne seront pas monétarisables (nombre de personnes « ajoutées » en zone inondable, nombre d’emplois « ajoutés »...). Ces impacts négatifs devront bien apparaitre dans le calcul des indicateurs élémentaires d’enjeux.
- Certains impacts peuvent être monétarisés en appliquant la même méthode de calcul que les DEMA, sauf qu’il s’agira de dommages ajoutés et non de dommages évités. Ces impacts négatifs devront bien apparaître dans le calcul des indicateurs élémentaires de dommages monétaires.

Point de vigilance n° 1 : ces impacts négatifs représentent en réalité des coûts pour le projet. Pour les bénéfices négatifs monétarisables (dommages ajoutés moyens annuels), il faudra veiller à considérer ces impacts comme des coûts annuels différés dans le calcul des indicateurs synthétiques suivants : ratio B/C, rapports C/NEMA habitants et C/NEMA emplois. Attention aux doubles-comptes potentiels !

Point de vigilance n° 2 : dans certains cas, il est prévu que ces dommages ajoutés soient évités par des mesures correctives. Dans ce cas, et comme cela a été précisé dans le point 7.1.1, le coût de ces mesures correctives doit être intégré dans le coût d’investissement.
7.3. Formalisation des coûts dans les indicateurs élémentaires

Tableau 12 : Indicateurs des coûts du projet. Source : CGDD

<table>
<thead>
<tr>
<th>Axes de la DI</th>
<th>N°</th>
<th>Indicateurs élémentaires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts</td>
<td>M5</td>
<td>Coût d'investissement</td>
</tr>
<tr>
<td>Monétaires</td>
<td>M6</td>
<td>Coûts annuels différés</td>
</tr>
</tbody>
</table>

Deux indicateurs élémentaires portent sur les coûts du projet : les coûts d’investissement et les coûts annuels différés.

L’indicateur des coûts annuels différés M6 regroupe :
- les coûts d’entretien (cf. partie VII.1.2),
- les coûts de réparation (cf. partie VII.1.3).
8. « **Boîte à outils Indicateurs synthétiques** » : comment calculer les indicateurs de l’analyse synthétique ?

8.1. Éléments méthodologiques préliminaires : DMA et NMA

8.1.1. Dommage Moyen Annuel causé par les inondations

Définition

Le DMA a pour objectif de synthétiser les différents dommages obtenus selon le type d’événements d’inondations qui peuvent se produire. Il intègre pour chaque type d’événement (événement fréquent à très rare) les dommages qui lui sont associés. Ainsi, il prend en compte la situation pour laquelle l’ouvrage a été dimensionné mais également les situations où les événements seraient plus faibles (donc l’ouvrage serait efficace mais surdimensionné) et où les événements seraient plus importants (avec donc, par exemple dans le cas d’une digue, surverse et dommages pour le territoire situé derrière cette digue). Mais ce dommage est pondéré en fonction de la fréquence de l’événement.

Le DMA peut alors s’interpréter comme un dommage moyen qui pourrait se produire chaque année en considérant une situation moyenne parmi les différents cas de figures possibles (de l’événement fréquent à rare).

Comme le DMA prend en compte les dommages engendrés par toutes les périodes de retour d’événements, il permet d’intégrer les poids relatifs de chaque dommage en fonction de la période de retour. Le DMA exprime ce que coûte en moyenne par an l’ensemble des événements d’inondations possibles, et correspond donc à ce qui devrait être provisionné (en intégrant l’actualisation) chaque année pour faire face aux dommages éventuels.

Le DMA est calculé avec la formule suivante :

\[
DMA = \int_{f=0}^{1} D(f)df
\]

Concrètement, il correspond à l’aire sous la courbe dommages-fréquence, comme le montre la Figure 10 ci-dessous.

Figure 10 : Représentation du DMA. Source : CGDD.

Deux points consécutifs de la courbe dommages-fréquences sont reliés linéairement.
Dommage évité moyen annuel

Il est possible d’obtenir le dommage évité moyen annuel (DEMA) qui correspond au DMA du territoire sans projet (situation de référence) auquel on soustrait le DMA sur le territoire avec projet :

\[
\text{DEMA} = \text{DMA} \text{ (sans projet)} - \text{DMA} \text{ (avec projet)}.
\]

Le DEMA correspond à l’aire entre les deux courbes dommages-fréquences (sans et avec projet), comme le montre la Figure 11 :

Figure 11 : Représentation du DEMA. Source : CGDD.

8.1.2. Nombre Moyen Annuel d’enjeux en zone inondable

À l’instar du calcul du DMA, il est utile de calculer un enjeu moyen annuel, c’est-à-dire un Nombre Moyen Annuel (NMA) d’enjeux en zone inondable. Il correspond à la moyenne du nombre d’enjeux situés en zone inondable pour l’ensemble des scénarios d’inondations possibles sur le territoire, pondérée par la probabilité d’occurrence de ces scénarios.

Un Nombre Evité Moyen Annuel (NEMA) d’enjeux en zone inondable, c’est-à-dire un nombre moyen annuel d’enjeux protégés par le projet, peut être calculé. Il s’exprime de la façon suivante :

\[
\text{NEMA} = \text{NMA} \text{ (sans projet)} - \text{NMA} \text{ (avec projet)}
\]

Figure 12 : Représentation du NMA et du NEMA. Source : CGDD.
8.2. Calcul des indicateurs synthétiques

Rappelons que les indicateurs synthétiques étudiés sont les suivants :

<table>
<thead>
<tr>
<th>Objectifs</th>
<th>Notés...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacité</td>
<td></td>
</tr>
<tr>
<td>NEMA habitants*</td>
<td></td>
</tr>
<tr>
<td>NEMA emplois*</td>
<td></td>
</tr>
<tr>
<td>DEMA/ DMA sc. de référence</td>
<td></td>
</tr>
<tr>
<td>Coût-efficacité</td>
<td></td>
</tr>
<tr>
<td>C/ NEMA habitants</td>
<td></td>
</tr>
<tr>
<td>C/ NEMA emplois</td>
<td></td>
</tr>
<tr>
<td>Efficience</td>
<td></td>
</tr>
<tr>
<td>VAN</td>
<td></td>
</tr>
<tr>
<td>B/C</td>
<td></td>
</tr>
</tbody>
</table>

(*) Lorsque la situation spécifique du territoire le justifie, ils peuvent être complétés par un ou deux indicateurs d’efficacité supplémentaires

8.2.1. Mesure de l’efficacité du projet

Mesurer l’efficacité d’un projet, c’est répondre à la question : le projet atteint-il son objectif ? Pour y répondre, il est proposé de s’intéresser, en priorité, à trois des indicateurs élémentaires de bénéfices, l’indicateur sur le nombre d’habitants en zone inondable (P1), l’indicateur sur le nombre d’emplois en zone inondable (P7) et l’indicateur sur les dommages aux biens et activités (cumul des indicateurs M1 à M4. Lorsque la spécificité du territoire le justifie, il peut être intéressant d’étendre cette démarche à un ou deux indicateurs élémentaires de bénéfices supplémentaires.

Efficacité du projet au regard de l’objectif de mise en sécurité des populations

L’indicateur Nombre d’habitants en zone inondable a déjà été calculé pour le scénario de dimensionnement dans le cadre de l’analyse élémentaire. Cet indicateur doit être calculé à présent pour différents scénarios d’inondation.

La méthode de calcul passe ensuite par 3 étapes :

- l’évaluation du NMA d’habitants en zone inondable en situation avant projet,
- l’évaluation du NMA d’habitants en zone inondable en situation avec projet,
- puis l’évaluation du NEMA habitants (nombre moyen annuel d’habitants protégés par le projet).

Efficacité du projet au regard de l’objectif de résilience

Même démarche que ci-dessus, pour calculer un NEMA d’emplois (nombre moyen annuel d’emplois protégés par le projet).

Efficacité du projet au regard de l’objectif de protection d’autres enjeux prioritaires

Il est possible de calculer d’autres indicateurs d’efficacité du projet sous la forme d’indicateurs moyens annuels d’enjeux protégés (NEMA), en fonction de la vulnérabilité spécifique du territoire étudié. Par exemple, dans le cas d’un territoire caractérisé par une forte exposition de ses établissements sensibles aux inondations, il pourra être pertinent de calculer la capacité moyenne annuelle des établissements sensibles en situation de référence et en situation après projet. Dans le cas d’un projet dont l’un des objectifs est de protéger un espace caractérisé par la présence d’installations classées pour la protection de l’environnement, il pourra être calculé un nombre moyen annuel de sites dangereux « sortis » de la zone inondable.

Efficacité du projet au regard des dommages aux biens

Même démarche que ci-dessus pour calculer un DEMA (dommage évité moyen annuel). Afin de disposer d’une valeur relative, le DEMA est divisé par le DMA du scénario de référence.
8.2.2. Mesure du rapport coût-efficacité du projet

Mesurer le rapport coût-efficacité d’un projet, c’est évaluer si l’objectif du projet est bien atteint à moindre coût. Pour y répondre, il est proposé de s’intéresser à deux indicateurs : le coût du projet par personne protégée et le coût du projet par emploi protégé.

Coût du projet par habitant protégé

Cet indicateur synthétique présente le coût du projet par habitant protégé. Il se calcule à partir de l’indicateur du coût total du projet divisé par le NEMA habitants.

Attention : le coût total du projet correspond à un coût actualisé (voir partie 8.2.3 pour l’explication sur la notion d’actualisation) :

\[C = C_0 + \sum_{i=1}^{n} \frac{C_i}{(1 + r)^i} \]

avec :

- \(C_0 \) les coûts initiaux du projet,
- \(C_i \) les coûts annuels différés à l’année \(i \),
- \(n \) l’horizon temporel de la mesure\(^{31}\),
- \(r \) le taux d’actualisation (\(r \) est constant jusqu’en 2070).

Coût du projet par emploi protégé

Il se calcule à partir de l’indicateur du coût total du projet divisé par le NEMA emplois.

8.2.3. Mesure de l’efficience du projet

Mesurer l’efficience d’un projet, c’est vérifier qu’il produit du bien-être social (c'est-à-dire de la valeur nette pour la société). Deux indicateurs apportent des éléments de réponse à cette question : la valeur actualisée nette du projet (VAN) et le ratio B/C.

Notion préalable : l’actualisation des flux économiques futurs

Tout projet produit des flux économiques (des coûts et des bénéfices) qui s’échelonnent dans le temps. En schématisant, un projet de protection représente un coût d’investissement initial puis « rapporte » en évitant des dommages sur le territoire. Il faut donc comparer des flux qui s’opèrent au cours de différentes années, et c’est là qu’intervient le taux d’actualisation.

Le Commissariat Général du Plan définit l’actualisation comme une « opération mathématique qui permet de comparer des valeurs économiques qui s’échelonnent dans le temps : il s’agit de ramener la valeur future d’un bien, d’une dépense à une valeur actuelle ». « Cette notion traduit le prix relatif que nous attachons au présent et fixe la limite que nous sommes prêts à consentir pour l’avenir. Ce taux permet ainsi de comparer des valeurs économiques qui s’échelonnent dans le temps »\(^{32}\).

Selon les recommandations du Commissariat Général à la Stratégie et à la Prospective\(^{33}\), le taux d’actualisation de base s’élève à 2,5 % jusqu’en 2070, puis il diminue à 1,5 %. Le taux est choisi sans prise en compte du risque, dans la mesure où le projet est considéré comme n’ayant aucun impact sur l’activité économique au niveau national (PIB).

A court terme, le taux d’actualisation à considérer est donc constant, étant donné l’horizon temporel maximal de l’analyse de 50 ans. L’ensemble des formules qui suivent (VAN, ratio B/C) mais aussi simplement l’expression du coût actualisé \(C \) étudié au paragraphe précédent, sont données pour un taux d’actualisation constant, noté \(r \). Ces formules évoluent lorsque le taux d’actualisation varie sur l’horizon temporel de l’analyse. Dans ce cas, les expressions mathématiques de la VAN, du ratio B/C et de \(C \) sont données en annexe A-6.

\(^{31}\) Voir l’explication sur l’horizon temporel en partie 3.2.3.

\(^{33}\) Ibid.
Valeur Actualisée Nette (VAN)

À partir du DEMA et des coûts du projet, on peut calculer la valeur actualisée nette (VAN) du projet qui mesure les flux économiques générés par le projet (les bénéfices moins les coûts). Le montant de la VAN peut s’interpréter comme la quantité de dommages évités et alors économisés par la société, déduction faite des coûts, grâce aux investissements faits.

La VAN est calculée ainsi :

\[
VAN = S - C = -C_0 + \sum_{i=1}^{n} \frac{DEMA - C_i}{(1 + r)^i}
\]

avec :

- \(C_0\) les coûts initiaux du projet,
- \(C_i\) les coûts annuels différés à l’année \(i\),
- \(DEMA\) les dommages évités moyens annuels,
- \(n\) l’horizon temporel de la mesure34,
- \(r\) le taux d’actualisation (\(r\) est constant jusqu’en 2070).

Et B tel que :

\[
B = \sum_{i=1}^{n} \frac{DEMA}{(1 + r)^i}
\]

Ratio B/C

Un autre critère de choix est le ratio des bénéfices totaux actualisés sur les coûts totaux actualisés. Le ratio B/C peut s’interpréter comme le retour sur investissement de chaque euro investi dans le projet.

Il se calcule ainsi :

\[
\frac{B}{C} = \frac{\sum_{i=1}^{n} \frac{DEMA}{(1 + r)^i}}{\left(C_0 + \sum_{i=1}^{n} \frac{C_i}{(1 + r)^i}\right)}
\]

Attention : Dans certains cas, un projet peut générer des coûts qui sont calculés comme des DEMA (par exemple lorsque le projet créé une zone de surinondation). Ces dommages doivent bien être comptabilisés comme des coûts du projet et non comme des bénéfices négatifs ; par conséquent, ces dommages doivent bien apparaître au dénominateur du ratio et non au numérateur.

Critères de décision

Si la VAN est positive ou bien si le rapport B/C est supérieur à 1, la mesure étudiée, sur le périmètre géographique retenu et selon les enjeux et les types de dommages pris en compte, est rentable d’un point de vue économique.

Exemple : supposons que le coût initial soit de 30 millions d’euros, que les coûts annuels différés soient de 1 M€ par an, que le DEMA soit de 4 M€ par an et que l’horizon temporel soit de 30 ans. Alors la VAN est environ de 22 M€ et le rapport B/C de 1,5. Le projet est donc rentable économiquement.

Par ailleurs, le projet qui a le montant de VAN le plus élevé est celui qui permettra d’économiser le plus de dommages sur la période étudiée. Le projet qui a le ratio B/C le plus élevé est celui qui aura maximisé les dommages évités pour chaque euro investi. Un projet peut très bien avoir une VAN importante et un ratio B/C faible, ou l’inverse. Ces deux critères sont donc complémentaires et ne se substituent pas l’un à l’autre.

34 Voir l’explication sur l’horizon temporel en partie 3.2.3.
Hypothèse des enjeux constants

Il est supposé qu’il n’y a pas d’évolution des enjeux sur le territoire au cours du temps. Ainsi les bénéfices tirés d’un projet sont calculés à enjeux constants, l’installation éventuelle d’une nouvelle entreprise ou d’un nouvel équipement public n’est pas simulée.

Cette hypothèse se traduit par un DMA en situation de référence (respectivement après projet) constant au cours du temps, et donc un DEMA constant.

ENCADRE 4 : Pourquoi l’hypothèse des enjeux constants sur le territoire ?

Les enjeux sont considérés constants sur le territoire pour deux raisons :

- La première raison est politique : la doctrine de gestion du risque inondation repose sur le fait que la protection d’une zone exposée ne doit pas ouvrir à l’urbanisation.

8.3. Considérations liées à l’échéancier de réalisation des travaux

8.3.1. Répartition « classique » des flux économiques

Lorsque le projet est évalué très en amont, par exemple en phase d’avant-projet (et ne dispose donc pas d’études détaillées), les flux économiques sont généralement répartis de la façon suivante dans le temps, avec le (les) coût(s) d’investissement concentré(s) à t=0 (voir Figure 63 ci-dessous) :

Figure 6 : Échéancier classique des flux économiques. Source : CGDD, d’après ICSI (2009).

8.3.2. Échéancier de réalisation des travaux et conséquences sur les calculs

Dans certains cas, le projet est suffisamment avancé pour que le maître d’ouvrage dispose d’un échéancier de réalisation des travaux. Si le projet est constitué de différentes mesures structurelles, la réalisation des différentes mesures peut être étalée dans le temps. Les flux économiques d’investissement étudiés doivent alors respecter l’échéancier fixé et s’étaler dans le temps.
L’échéancier des coûts d’investissement peut aussi impliquer un échéancier des coûts annuels. Deux cas sont envisageables :

- La réalisation de l’ensemble des mesures est nécessaire pour faire fonctionner le système de protection : dans ce cas, il n’y a pas d’évolution des coûts annuels dans le temps,
- Chaque mesure peut être mise en service au fur et à mesure de leur réalisation et l’échéancier des coûts d’investissement se répercute sur l’échéancier des coûts annuels (de fonctionnement, de maintenance, etc.).

ILLUSTRATION 7 : Échéancier des coûts d’investissement, échéancier des coûts annuels

L’exemple suivant se base sur un projet composé de 3 mesures de 10 k€ de coût d’investissement chacune. La première mesure est réalisée à l’année t0, la seconde à l’année t=2 et la troisième à l’année t=5.

Dans le premier cas, le système ne peut fonctionner que si les 3 mesures sont réalisées. Le coût annuel de fonctionnement du système est estimé à 0,6 k€.

Dans le second cas, chaque mesure peut être mise en service au fur et à mesure de sa réalisation. Chaque mesure implique un coût annuel de fonctionnement de 0,2 k€.

<table>
<thead>
<tr>
<th>Cas 1</th>
<th>Années</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>10</th>
<th>11</th>
<th>...</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts d’investissement</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coûts annuels différés</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cas 2</th>
<th>Années</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>10</th>
<th>11</th>
<th>...</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts d’investissement</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coûts annuels différés</td>
<td>0</td>
<td>0,2</td>
<td>0,2</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Dans le cas où les mesures constituent le projet sont interdépendantes du point de vue hydraulique (et fonctionnent donc en système de protection cohérent), l’échéancier des coûts d’investissement peut impliquer un échéancier des dommages évités grâce au projet. En effet, la réalisation d’une première série de mesures permettra de générer des bénéfices (DEMA1) qui s’accroîtront avec la réalisation des autres mesures (DEMA2, ..., DEMAp). Dans ce cas, il y aura autant de calculs de DEMA nécessaires qu’il y a de phases de réalisation des travaux.

ILLUSTRATION 8 : Échéancier des coûts d’investissement et échéancier des bénéfices (DEMA)

L’impact de l’échéancier des coûts d’investissement est étudié sur la base de l’exemple précédent. Le DEMA de l’ensemble des mesures est estimé à 7 k€.

<table>
<thead>
<tr>
<th>Cas 1</th>
<th>Années</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>10</th>
<th>11</th>
<th>...</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts d’investissement</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coûts annuels différés</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>DEMA total</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cas 2</th>
<th>Années</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>10</th>
<th>11</th>
<th>...</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts d’investissement</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Coûts annuels différés</td>
<td>0</td>
<td>0,2</td>
<td>0,2</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>DEMA série 1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMA série 1+2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEMA série 1+2+3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DEMA total</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
La présence ou non d’un échéancier de réalisation des travaux impacte le calcul :

- des indicateurs C/NEMA habitants et C/NEMA emplois via le coût actualisé total du projet,
- de la VAN et du ratio B/C via le coût actualisé et les bénéfices actualisés (somme des DEMA actualisés).

Les formules des coûts actualisés C, de la VAN et du ratio B/C, dans la situation où les coûts d’investissement sont étalés dans le temps, sont données en annexe A-6.

8.4. Analyse de sensibilité et analyse d’incertitude des indicateurs synthétiques

Il est indispensable de mesurer la robustesse des résultats des indicateurs synthétiques par rapport aux approximations réalisées lors des différentes modélisations. Cela peut se faire par une analyse de sensibilité, voire par une analyse d’incertitude.

ENCADRE S : Analyse de sensibilité et analyse d’incertitude

Analyse de sensibilité et analyse d’incertitude sont souvent confondues, alors qu’il s’agit de deux travaux distincts dans l’évaluation de la robustesse d’un résultat.

L’analyse d’incertitude s’attache à qualifier les incertitudes associées aux différents paramètres mobilisés et à étudier leur propagation jusqu’aux résultats de sortie du modèle d’évaluation économique. Elle doit idéalement permettre de fournir des intervalles de confiance sur les indicateurs synthétiques.

L’analyse de sensibilité consiste quant à elle à estimer la contribution de chaque paramètre d’entrée à la variabilité des résultats de sortie du modèle : elle permet d’identifier les paramètres les plus importants, ceux dont les variations conditionnent la robustesse finale des résultats de l’évaluation économique.

Sont concernés par cette analyse les indicateurs synthétiques suivants : C/NEMA habitants, C/NEMA emplois, VAN, ratio B/C et rapport DEMA/DMA sc. de référence.

Pour effectuer correctement une analyse de sensibilité, la méthode préconisée consiste à faire varier les paramètres-clés du modèle. Dans la mesure du possible, il s’agit de tester ces paramètres selon la fourchette réaliste de variation du paramètre et de regarder quel est l’impact de cette variation sur le résultat de l’étude.

Si l’écart entre le résultat initial et le résultat après variation du paramètre est faible, cela signifie que ce paramètre est peu influent sur le modèle. Si cet écart est important et fait varier le résultat final de l’étude, une analyse plus précise de ce paramètre doit être effectuée et la valeur fixée de celui-ci doit être explicitée.

À titre d’exemple, nous proposons une liste de paramètres à tester, cette liste n’est, bien évidemment, pas exhaustive. La plupart des paramètres qui doivent nécessairement être testés sont liés aux incertitudes sur les données d’entrée.

- Période de retour des différents scénarios d’aléa, en particulier du scénario générant les premiers dommages,
- Montant des coûts,
- Hauteur de premier plancher des enjeux (uniquement pour la VAN, le ratio B/C et l’indicateur DEMA/DMA sc. de référence),
- Montant des dommages (uniquement pour la VAN, le ratio B/C et l’indicateur DEMA/DMA sc. de référence).

Si les éléments de méthode ne permettent pas d’estimer l’incertitude des paramètres de façon précise, il est recommandé de mener l’analyse de sensibilité sur la base des variations suivantes :

<table>
<thead>
<tr>
<th>Tableau 13 : Incertitude forfaitaire proposée par défaut pour différents paramètres d’entrée. Source : CGDD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coûts des dommages</td>
</tr>
<tr>
<td>Coût d’investissement</td>
</tr>
<tr>
<td>Coûts d’entretien</td>
</tr>
</tbody>
</table>
Pour effectuer correctement une analyse d’incertitude, nous conseillons la lecture du manuel réalisé par l’IRSTEA\(^{35}\) dans le cadre de l’ACB. L’IRSTEA propose aussi un outil simplifié permettant d’analyser la sensibilité de la VAN et du ratio B/C aux différents paramètres d’entrée et de mener une analyse d’incertitude sur X simulations donnant les résultats suivants :

- la valeur moyenne de la VAN (respectivement du ratio B/C),
- les valeurs extrêmes prises par la VAN (resp. par le ratio B/C),
- le paramètre de dispersion (correspondant classiquement à l’écart-type) pris par la VAN (resp. par le ratio B/C),
- l’intervalle pris par la VAN (resp. par le ratio B/C) dans 90 % des cas,
- la probabilité que la VAN (resp. le ratio B/C) a d’être négative.

Annexes

A.1. Liste des guides techniques et outils supports

Guides techniques de l’évaluation des dommages par enjeu :

Guide sur les dommages aux logements :

Guide sur les dommages aux activités agricoles :

Guide sur les dommages aux entreprises :

Référentiels des coûts des ouvrages de protection :

Guide sur le coût des protections contre les inondations fluviales :

Guide sur le coût des protections contre les inondations torrentielles (rapport ONF-RTM, à venir),
- Boncompain, I., (à venir). Rapport ONF-RTM.

Guide sur le coût des protections contre les submersions marines (rapport CEREMA, à venir).

Recommandations complémentaires pour les projets littoraux :

Outils supports de l’évaluation :

Annexes techniques du guide méthodologique.

Fonctions de dommages (fichier excel téléchargeable).

Outil IRSTEA d’analyse de la sensibilité et de l’incertitude (fichier téléchargeable).
A.2. Bibliographie

A.3. Glossaire

Aléa inondation : possibilité d’une inondation d’occurrence et d’intensité données.

Analyse élémentaire : analyse de la pertinence d’un projet sur la base d’indicateurs élémentaires (voir indicateur élémentaire).

Analyse synthétique : analyse de la pertinence d’un projet sur la base d’indicateurs synthétiques (voir indicateur synthétique).

Analyse mono-scénario : analyse des bénéfices d’un projet (dommages évités grâce au projet) sur la base d’un unique scénario d’aléa (scénario de dimensionnement). Cette caractérisation de l’aléa permet le calcul des indicateurs de dommages et d’enjeux.

Courbe de dommages (syn. Fonction de dommages) : fonction définie pour un enjeu, qui associe aux paramètres hydrologiques et/ou hydrauliques de l’inondation le montant des dommages en valeur absolue induits par l’inondation de l’enjeu. Le paramètre le plus fréquent est la hauteur maximale de submersion, mais la fonction peut aussi dépendre d’autres paramètres comme la saison d’occurrence, la durée de la submersion, la cinétique de l’inondation (rapide ou lente). Exemple fictif pour un logement : Dommage = 5 000 + 10 000 * H avec H la hauteur d’eau dans le bâtiment. Donc si H = 1 mètre, le dommage pour cette habitation est de 15 000 euros.

Courbe d’endommagement (syn. Fonction d’endommagement) : fonction équivalente à la courbe de dommage, sauf qu’elle exprime les dommages relativement à un indicateur de « bon » état de l’enjeu, qui peut être la valeur de l’enjeu (dommages directs) ou une évaluation de l’activité de l’enjeu (dommages indirects).

- Exemple fictif : Dommage = H^"15 %" valeur de la construction du logement, avec H la hauteur d’eau dans le bâtiment. Donc pour H = 1 mètre et un logement de 100 000 euros, le dommage est de 15 000 euros.

Courbe dommages-fréquences : courbe qui associe, pour un territoire donné, le coût total des dommages pour tout aléa pouvant survenir sur ce territoire. Cette courbe constitue la signature de la vulnérabilité d’un territoire aux inondations.

Dommage : préjudice causé par un aléa naturel (ici l’aléa inondation). On distingue :

- les dommages directs : correspondent à des dégâts matériels (destruction, endommagement) imputables à l’impact physique de l’inondation (MEDD, 2007) ;
- les dommages indirects : sont les conséquences, sur les activités ou les échanges, des dégâts matériels (par exemple la perte d’exploitation d’une entreprise suite à la destruction de ses stocks ou de l’outil de production) (MEDD, 2007) ;
- les dommages intangibles : sont les dommages à des personnes et des biens pour lesquels il n’existe pas de marché ad hoc, et donc difficilement monétarisables en l’état actuel des connaissances. Par exemple : le stress, les modifications du paysage, la pollution…

Efficacité : capacité d’une mesure à parvenir aux objectifs qui lui ont été fixés.

Efficience : l’efficience met en relation les résultats atteints avec les moyens mis en œuvre pour y arriver (par exemple les ressources financières utilisées). Le terme d’efficience sous-entend une optimisation des ressources pour parvenir à un niveau donné d’efficacité.

Enjeux : Personnes, biens, activités, moyens, patrimoine, environnement etc. susceptibles d’être affectés directement ou indirectement par un aléa naturel.

Indicateur de dommages (monétaires) : indicateur donnant le coût potentiel d’un dommage causé par une inondation sur un enjeu. Il permet d’intégrer la vulnérabilité intrinsèque de l’enjeu aux inondations. Le calcul de cet indicateur passe par une étape de monétarisation.

Indicateur d’enjeux : indicateur permettant d’approcher le dommage causé par une inondation sur un enjeu. Il mesure la présence d’un enjeu en zone inondable. Il ne permet pas de capter le degré de vulnérabilité de l’enjeu aux inondations.

Indicateur moyen annuel : indicateur permettant d’évaluer l’impact, sur un territoire donné et pour un type d’enjeu donné, de l’ensemble des inondations potentielles pondérées par leur probabilité d’occurrence. Il peut être monétaire (dommage moyen annuel – DMA) ou non monétaire (nombre moyen annuel d’enjeux en zone inondable – NMA).

Indicateur élémentaire : indicateur permettant de qualifier les bénéfices ou les coûts d’un projet. Lorsqu’il porte sur les bénéfices (dommages évités), il est calculé pour un scénario d’aléa donné (scénario de dimensionnement du projet).
Indicateur synthétique : indicateur permettant d’évaluer l’efficacité, le rapport coût-efficacité ou l’efficience d’un projet. Il est calculé à partir d’un (ou plusieurs) indicateur(s) moyen(s) annuel(s).

Inondation : submersion temporaire par l’eau de terres qui ne sont pas submergées en temps normal. Cette notion recouvre les inondations dues aux crues des rivières, des torrents de montagne et des cours d’eau intermittents méditerranéens ainsi que les inondations dues à la mer dans les zones côtières (directive Inondation, 2007).

Mesure (syn. Action) : intervention réalisée sur un territoire pour limiter le risque inondation.

Niveau de protection : niveau en deçà duquel le projet assure l’innocuité des entrées d’eau. Il est défini par le gestionnaire.

Niveau de sûreté : niveau au-delà duquel la tenue de la structure de l’ouvrage n’est plus assurée et est susceptible de ruine à tout instant.

Projet (syn. Programme d’actions) : ensemble de mesures de prévention des inondations sur un territoire, constituant une stratégie cohérente d’aménagement.

Risque d’inondation : la combinaison de la probabilité d’une inondation et des conséquences négatives potentielles pour la santé humaine, l’environnement, le patrimoine culturel et l’activité économique associée à une inondation (directive Inondation, 2007).

Scénario d’aléa (syn. Scénario d’évènement) : modélisation hydraulique d’un événement ou d’une concomitance d’évènements.
A.4. Liste des abréviations

ACB : Analyse coûts-bénéfices
AMC : Analyse multi-critères
AS : Autorisé avec servitude
ASN : Autorité de sûreté nucléaire
ARS : Agence régionale de santé
BD : Base de données
BTP : Bâtiment-Travaux publics
CCR : Caisse centrale de réassurance
CERTU : Centre d'études sur les réseaux, les transports, l'urbanisme et les constructions
CGDD : Commissariat général au développement durable
CLC : CORINE Land Cover
DBOS : Demande biochimique d’oxygène en 5 jours
DDT(M) : Direction départementale des territoires (et de la mer)
DEMA : Dommage évité moyen annuel (dommage moyen annuel évité grâce au projet)
DGFiP : Direction générale des finances publiques
DGPR : Direction générale de la prévention des risques
DIR : Direction interrégionale des routes
DMA : Dommage moyen annuel
DOM : Département d’outre-mer
DRAC : Direction régionale des affaires culturelles
DREAL : Direction régionale de l’Environnement, de l’Aménagement et du Logement
EH : Équivalent habitant
EPTB : Établissement public territorial de bassin
ERP : Établissement recevant du public
HTB : Haute tension B
ICPE : Installation classée pour la protection de l’environnement
IGN : Institut national de l’information géographique et forestière
INB : Installation nucléaire de base
INSEE : Institut national de la statistique et des études économiques
IPPC : Integrated Pollution Prevention and Control
IRIS : Ilot regroupé pour l’information statistique
MEDDE : Ministère de l’Écologie, du Développement durable et de l’Énergie
MAPAD : Maison d’accueil pour les personnes âgées dépendantes
MNHN : Muséum national d’histoire naturelle
NAF : Nomenclature d’activités française
NEMA : Nombre évité moyen annuel (nombre moyen annuel d’enjeux protégés par le projet)
NMA : Nombre moyen annuel (d’enjeux en zone inondable)
ORSEC (dispositif) : Organisation de la réponse de sécurité civile
PAC : Politique agricole commune
PC : Poste de commandement
PCS : Plan communal de sauvegarde
PLU : Plan local d’urbanisme
PPR : Plan de prévention des risques
RATP : Régie autonome des transports parisiens
RER : Réseau express régional
RFF : Réseau ferré de France
RGP : Registre parcellaire graphique
SDIS : Service départemental d’incendie et de secours
SNCF : Société nationale des chemins de fer Français
STEU : Station de traitement des eaux usées
TMJA : Trafic moyen journalier annuel
VAN : Valeur actualisée nette (mesure de la valeur nette produite par un projet)
ZI : Zone inondable
ZNIEFF : Zone naturelle d’intérêt écologique faunistique et floristique
A.5. Liste des bases de données mobilisées

SIRENE : Système informatique pour le répertoire des entreprises et de leurs établissements (base de données Insee)

BDHI : base de données des événements historiques (base de données DGPR)

GASPAR : Gestion assistée des procédures administratives relatives aux risques naturels et technologiques (base de données DGPR)

CLAP : Connaissance locale de l’appareil productif (base de données Insee)

BD TOPO : base de données du référentiel grande échelle (RGE) de l’IGN

MAJIC : base de données du foncier de la Direction générale des finances publiques (DGFIP)

Données de population carroyées : données de population par carreau de 200 m x 200 m (Insee)

FINESS : Fichier national des établissements sanitaires et sociaux (ministère des Affaires sociales et de la Santé)

BDERU : Base de données des Eaux résiduaires urbaines (ministère de l’Ecologie, du Développement Durable et de l’Énergie)

Base des installations classées (DGPR)

SINOE : Système d’information et d’observation de l’environnement (Ademe)

IREP : Registre français des émissions polluantes (DGPR)

INPN : Inventaire national du patrimoine naturel (Muséum national d’histoire naturelle)

S3IC : Système d’information de l’inspection des installations classées (DGPR)

Museofile : répertoire des musées français (ministère de la Culture)

CLC : CORINE Land Cover, base de données d’occupation du sol (CGDD/SOeS)

RPG : Registre parcellaire graphique : données de la politique agricole commune, disponibles sur le site du Géoportail

Barèmes d’indemnisation des calamités agricoles : base de données départementale établie par les DDT et les chambres d’agricultures

RGA : Recensement général agricole : données de structure sur les exploitations agricoles

SAA : Statistique agricole annuelle – Agreste : statistiques d’utilisation des terres et de production agricole (établies par les DREAL)

RICA : Réseau d’information comptable agricole – Agreste : rendements, produits bruts, prix, marges brutes et VA pour une exploitation type, classé par orientation technico-économique des exploitations
A.6. Expressions mathématiques de la VAN, du ratio B/C et des coûts actualisés (C)

A.6.1 Expressions avec taux d’actualisation constant

Rappels : expressions simples (échéancier « classique »)

Les formules suivantes sont données dans la situation la plus simple considérée : avec un taux d’actualisation constant, un investissement fait en une seule tranche et en une année (à la date t=0 par convention) et des bénéfices attendus constants dans le temps.

On notera :

- \(C_0 \) les coûts initiaux du projet,
- \(C_i \) les coûts annuels différés à l’année \(i \),
- \(DEMA \) les bénéfices attendus (dommages évités moyens annuels),
- \(n \) l’horizon temporel de la mesure,
- \(r \) le taux d’actualisation (\(r \) est constant jusqu’en 2070),
- \(B \) la somme des bénéfices actualisés sur l’horizon temporel,
- \(C \) la somme des coûts actualisés sur l’horizon temporel.

\[
C = C_0 + \sum_{i=1}^{n} \frac{C_i}{(1+r)^i}
\]

\[
B = \sum_{i=1}^{n} \frac{DEMA}{(1+r)^i}
\]

\[
VAN = B - C = -C_0 + \sum_{i=1}^{n} \frac{DEMA - C_i}{(1+r)^i}
\]

\[
B/C = \frac{\sum_{i=1}^{n} \frac{DEMA}{(1+r)^i}}{\sum_{i=1}^{n} \frac{C_i}{(1+r)^i}}
\]

Situation avec échéancier des coûts et des bénéfices

En règle générale, les investissements ont un échéancier de réalisation. Il en découle alors que les effets attendus de la politique ne seront complets que lors de la finalisation du programme complet. Les bénéfices attendus de la politique (ainsi que les coûts différés, notamment les couts d’entretien) seront en général impactés en fonction de cet échéancier de réalisation. Pour les études suivant le présent guide il est proposé la démarche suivante :

- Si le projet est constitué de plusieurs tranches bien identifiées (sous-aménagements), qui seront réalisées de façon séquentielle, il s’agira de tenir compte de l’effet marginal de ces sous-aménagements pour évaluer l’évolution des bénéfices. Pour chacun de ces sous-aménagements, le bénéfice escompté comme les coûts différés associés n’interviendront que l’année suivant la date de finalisation prévue.
- Si le projet n’entre pas dans le point précédent, l’ensemble des bénéfices et des coûts différés ne seront pris en compte que l’année suivant la date de finalisation prévue du projet.
De fait, les coûts et les bénéfices pourront prendre la forme suivante :

<table>
<thead>
<tr>
<th>Année</th>
<th>Sous-projet 1</th>
<th>Sous-projet 2</th>
<th>Projet complet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inves.</td>
<td>Différé</td>
<td>DEMA</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>25</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

A.6.2 Expressions avec taux d’actualisation variable

Il est possible que le taux d’actualisation ne soit pas constant sur toute la période de l’horizon temporel. Dans ce cas, les formules pour calculer la VAN et le Ratio B/C prennent une forme différente (voir ci-dessous). Les formules sont présentées dans le cas le plus général, c’est-à-dire avec des coûts et des bénéfices pouvant varier avec le temps.

On notera alors :

- **DEMA** : les bénéfices attendus (en termes de dommages évités) grâce aux mesures réalisées à la date i,
- **r** : le taux d’actualisation à l’année j. Par convention, r0=0.

\[
C = \sum_{i=0}^{n} \frac{C_i}{\prod_{j=0}^{i-1}(1 + r_j)}
\]

\[
B = \sum_{i=0}^{n} \frac{DEMA_i}{\prod_{j=0}^{i-1}(1 + r_j)}
\]

\[
VAN = B - C = \sum_{i=0}^{n} \frac{DEMA_i - C_i}{\prod_{j=0}^{i-1}(1 + r_j)}
\]

\[
B/C = \frac{\sum_{i=0}^{n} DEMA_i}{\sum_{i=0}^{n} C_i} / \frac{\prod_{j=0}^{i-1}(1 + r_j)}{\sum_{i=0}^{n} C_i}
\]

Édouard Hénaut

36 Dans le cas d’une analyse dont l’horizon temporel dépasse 2070.
Liste des figures, des tableaux, des illustrations et des encadrés

Liste des figures

Figure 1 : Logique d’évaluation des bénéfices, indicateurs de dommages et indicateurs d’enjeux. Source : CGDD. 12
Figure 2 : Les étapes de l’AMC et les « Boîtes à outils » proposées pour la réaliser. Source : CGDD. 22
Figure 3 : Etapes d’analyse des bénéfices associés à un projet. Source : CGDD. 28
Figure 4 : Représentation de la courbe dommages-fréquences en fonction des situations de référence. Source : CEREMA. 36
Figure 5 : Courbe dommages-fréquences dans le cas d’un système de protection comprenant deux ouvrages de niveaux de protection différents. Source : CEREMA. 37
Figure 6 : Méthode générale d’élaboration des fonctions de dommages, exemple du logement. Source : CGDD, d’après CEPR. 41
Figure 7 : Mode d’emploi des fonctions de dommages aux logements. Source : CEPR. 46
Figure 8 : Exemples de représentation cartographique des indicateurs (cas de l’indicateur P1). Source : CGDD. 56
Figure 9 : Calcul du coût moyen annuel des réparations à un ouvrage. Source : CGDD. 58
Figure 10 : Représentation du DMA. Source : CGDD. 61
Figure 11 : Représentation du DEMA. Source : CGDD. 62
Figure 12 : Représentation du NMA et du NEMA. Source : CGDD. 62
Figure 13 : Échéancier classique des flux économiques. Source : CGDD, d’après ICSI (2009). 66

Liste des tableaux

Tableau 1 : Dommages captés par l’ACB et limites. Source : CGDD. 11
Tableau 2 : Finalité des indicateurs d’enjeux. Source : CGDD. 13
Tableau 3 : Objectifs et indicateurs élémentaires de l’AMC. Source : CGDD. 16
Tableau 4 : Objectifs et indicateurs synthétiques de l’AMC. Source : CGDD. 19
Tableau 5 : Les bénéfices monétaires et non monétaires et les scénarios étudiés. Source : CGDD. 29
Tableau 6 : Recommandations pour les catégories du RPG non couvertes par une fonction de dommages. Source : CGDD d’après IRSTEA. 48
Tableau 7 : Correspondances entre catégories d’établissements publics et méthode d’évaluation des dommages. Source : CGDD d’après CEPR. 52
Tableau 8 : Indicateurs d’enjeux principaux. Source : CGDD. 54
Tableau 9 : Indicateurs d’enjeux secondaires. Source : CGDD. 54
Tableau 10 : Liens entre coûts d’investissement et coûts annuels différés. Tableau de synthèse. Source : CGDD. 59
Tableau 11 : Indicateurs des coûts du projet. Source : CGDD. 60
Tableau 12 : Incertitude forfaitaire proposée par défaut pour différents paramètres d’entrée. Source : CGDD. 68
Liste des illustrations (exemples)
ILLUSTRATION 1 : Les limites de l’ACB dans l’évaluation des PAPI
ILLUSTRATION 2 : De l’utilité de l’évaluation économique dans l’élaboration du projet
ILLUSTRATION 3 : Cas de l’indépendance hydraulique de mesures composant un PAPI
ILLUSTRATION 4 : Quelques exemples d’analyse des indicateurs élémentaires d’un projet
ILLUSTRATION 5 : Analyse et interprétation des indicateurs synthétiques d’un projet
ILLUSTRATION 6 : La question de la perte d’attractivité touristique
ILLUSTRATION 7 : Échéancier des coûts d’investissement, échéancier des coûts annuels
ILLUSTRATION 8 : Échéancier des coûts d’investissement et échéancier des bénéfices

Liste des encadrés
ENCADRE 1 : La typologie des dommages
ENCADRE 2 : Analyse économique et analyse financière
ENCADRE 3 : Paramètres de l’aléa nécessaires en fonction des enjeux
ENCADRE 4 : Pourquoi l’hypothèse des enjeux constants sur le territoire ?
ENCADRE 5 : Analyse de sensibilité et analyse d’incertitude
Commissariat général au développement durable
Service de l’économie, de l’évaluation et de l’intégration du développement durable
Service de l’observation et des statistiques
Tour Voltaire
92055 La Défense cedex
Tél : 01.40.81.21.22

Retrouver cette publication sur le site :
http://www.developpement-durable.gouv.fr/developpement-durable/
Résumé

Le présent guide méthodologique propose une méthode d’évaluation socioéconomique des mesures de prévention des inondations, basée sur une approche multicritères. Destiné aux porteurs des projets de gestion des inondations (collectivités, établissements publics territoriaux de bassins), aux DREAL et aux DDT ainsi qu’aux bureaux d’études qui travaillent avec eux, il fournit des recommandations et des outils pour évaluer le bien-fondé des mesures envisagées sur les territoires.

Dépôt légal : Juillet 2014
ISSN : 2102-474X