EORIE DLE VALIUN

 INTERDCTONDE REMETRER
D A M 2 =
 EN CAS DE CRUL quBLHE

sluceway
NqEMाH ORR:AKINE DANeEn
Plans de prévention des risques naturels (PPR) Les risques d'inondation Le ruissellement péri-urbain

NOTE COMPLÉMENTAIRE

Ci-contre : le Paillon à Nice (Alpes-Maritimes)
lors de la crue de novembre 1940.
Photo de couverture : embouchure actuelle
du Paillon à Nice. [MEDD/DPPR/SDPRM/BRN].

Cet ouvrage, réalisé à l'initiative de la direction de la Prévention des pollutions et des risques (DPPR) a été élaboré et rédigé par Jean-Daniel Baladès (CETE du Sud-Ouest), Maxime Monfort (LROP-DREIF) et Jean Gaber (DPPR).

Il s'appuie sur les réflexions menées par un comité technique, animé par Jean Gaber, constitué par Mme Vigneron (CERTU), MM. Crosnier (DIREN Haute-Normandie), Faure-Soulet (CETE Méditerranée), Guézo (CERTU), Jarry (DDAF 13), Leroux (DDE 76), Moronval (DPPR), Paquier (CEMAGREF), Tanguy (CETE Méditerranée), avec la participation de MM. Garry (DGUHC) et Gaume (CEREVE).

Septembre 2004

Plan de prévention des risques naturels Les risques d'inondation (le ruissellement péri-urbain)

Sommaire

Préface 2
Introduction 3
La problématique
L'urbanisme et l'occupation des sols
La situation du risque pluvial
Une modularité dans l'action
Le ruissellement 8
Les crues par ruissellementLes caractéristiques du bassin versantL'occupation des thalwegs
Les actions relevant de la compétence des collectivités territoriales 15Une nécessaire solidarité de bassin versantLes actions et initiatives des collectivités territoriales
Les possibilités offertes par le zonage pluvialLes possibilités offertes par la démarche PLULes mesures non structurelles
Méthodologie pour l'élaboration du PPR ruissellement 22
Les actions relevant du PPR
La connaissance des aléas
Les enjeux
Le zonage réglementaire
Éléments pour un règlement du PPR
Annexes
Extraits d'un zonage d'assainissement 39
Extraits d'un PLU 44
Affichage des consignes de sécurité 48
Extraits d'un règlement de PPR 49
Programme de diagnostics des zones soumises à des crues brutales 52
La pratique des courbes IDF 56
Glossaire 59
Principales références bibliographiques 60

Préambule

«C'est véritablement une manie, pour les ingénieurs municipaux ou de l'État que la mise en tunnel de torrents susceptibles de crues fantastiques que personne ne saurait calculer avec la prudence nécessaire...» [Pardé, 1963].

On désigne sous les termes de «ruissellement pluvial péri-urbain» les apports d'eaux pluviales engendrés par les bassins versants naturels, ruraux ou urbains, dont la taille est inférieure à quelques dizaines de km^{2}. Ces apports sont de quelques $\mathrm{m} 3 / \mathrm{s} / \mathrm{km}^{2}$ à quelques dizaines de $\mathrm{m}^{3} / \mathrm{s} / \mathrm{km}^{2}$ pour les régions méditerranéennes. Les temps de montée des crues sont relativement courts, de l'ordre de quelques dizaines de minutes à quelques heures. Il est alors pratiquement impossible d'alerter les populations.

Depuis 1982, plus de 75% des communes ont connu au moins une fois les situations de ce type, les phénomènes météorologiques étant constitués dans la plupart des cas par des pluies intenses de courte durée mais également par des épisodes pluvieux s'étalant sur un, voire plusieurs jours. Ces précipitations contribuent également au déclenchement de glissements de terrain et à la formation de coulées de boue.

Les causes sont multiples, l'insuffisance des réseaux d'assainissement des eaux pluviales, l'urbanisation dans le lit majeur, voire sur le lit mineur des petits cours d'eau, ou plus simplement la concentration des flots.

Toutes choses égales par ailleurs, si pour un bon nombre de communes la récurrence de ces inondations signifie, à coup sûr, l'insuffisance de la capacité de leurs ouvrages d'évacuation des eaux pluviales et peut être appréhendée sans trop de difficultés dans le cadre de l'élaboration d'un zonage d'assainissement pluvial qui prendra en compte tant les besoins à court terme que le développement à long terme de l'urbanisation, pour d'autres elle constitue le signe avant coureur de catastrophes plus importantes.

La méthodologie d'études des PPR «ruissellement péri-urbain» est tout à fait semblable à celle des études menées dans le cadre des inondations par les cours d'eau. Elle s'en distingue cependant par de fortes incertitudes sur l'estimation des débits des crues pour une occurrence donnée, par la complexité des écoulements en zones urbaines liée aux nombreuses confluences et diffluences au droit des carrefours.

Thierry Trouvé

Directeur de la prévention des pollutions et des risques, Délégué aux risques majeurs

Introduction

■ La problématique

Il s'agit de comprendre le parcours de l'eau. L'analyse de la topographie permet de révéler un axe d'écoulement, marqué par un cours d'eau permanent ou intermittent. L'occupation du sol, en particulier l'urbanisation, peut avoir entraîné sa modification voire sa disparition. Le cours d'eau est alors devenu un collecteur ou pire une rue.

L'échelle pertinente d'étude et d'action est celle du bassin versant, territoire géographique au sein duquel:

- une solidarité, amont-aval mais également avalamont, doit s'exprimer;
- le cycle de l'eau issue du fonctionnement naturel des milieux et de l'activité humaine doit trouver sa place.

Le risque, résultat de la conjonction d'un fait perturbateur et de la vulnérabilité du système qui le subit, dépend, pour ce qui concerne les inondations par ruissellement :

- des quantités d'eau pluviale précipitées, dont le caractère exceptionnel s'apprécie par sa fréquence de dépassement ou par sa période de retour;
- des caractéristiques du bassin versant récepteur;
- de la vulnérabilité plus ou moins grande de l'urbanisation.

Selon la morphologie du bassin versant, les effets de la pluie vont être amplifiés ou au contraire minimisés; selon les activités humaines, les conséquences d'un dysfonctionnement vont être minimes ou catastrophiques. Parmi les facteurs aggravants nous pouvons citer:

- la topographie et la forme du bassin, qui influent surtout la vitesse de ruissellement donc le temps de réponse;
- les conditions hydrographiques à l'aval;
- le pourcentage de surfaces imperméabilisées générant du ruissellement mais aussi la nature et la teneur en eau des surfaces perméables qui conditionnent leur participation au ruissellement;
- le mode d'urbanisation et d'aménagement de l'espace qui peuvent constituer des obstacles à l'écoulement de l'eau et aggraver par conséquent les impacts des inondations.

Agir efficacement sur le risque, c'est nécessairement prendre en considération la pluie et l'état du bassin versant. Il faut par ailleurs rappeler que les réponses techniques ne peuvent pas supprimer le risque d'inondation, mais qu'elles permettent de le gérer.

Seul le risque d'inondation par ruissellement pluvial est considéré ici, illustré par:

- des sites où l'agglomération est à l'origine de ses propres désordres;
- une urbanisation de plateau caractérisée par une faible densité du réseau hydrographique, indiquant la présence de formations drainantes. La diminution de l'infiltration des eaux par imperméabilisation des sols génère des ruissellements;
- un ruissellement en nappe se formant sur des surfaces planes, imperméables ou saturées en eau, dans la direction de plus grande pente;
- un épisode pluvieux de quelques heures, voire quelques jours sur un petit bassin versant (quelques dizaines de km^{2}) à l'amont d'une zone urbanisée.

En cas de forte urbanisation, la crue résultante se caractérise par:

- un accroissement des débits de pointe pour les crues les plus fréquentes donc des inondations du fait de niveaux d'eau plus élevés;
- une augmentation des volumes ruisselés lors d'épisodes pluvieux peu intenses et une diminution de la recharge des nappes phréatiques;
- une augmentation des vitesses d'écoulement et des érosions des sols;
- une dimension du phénomène dépendante du rapport de la surface imperméabilisée à la surface totale considérée.

L'urbanisme et l'occupation des sols

L'évolution de l'occupation des lits majeurs des cours d'eau...

Dire que l'occupation des sols s'est d'abord développée sur les terrains les moins exposés aux risques d'inondation est sans doute une trop grande généralité. Cependant force est de constater que les constructions se sont le plus souvent développées dans des zones où le temps de montée des crues était suffisamment grand et les vitesses d'écoulement suffisamment lentes pour ne pas engendrer de dégâts trop importants aux biens et limiter les risques encourus par les personnes. Rares sont dans le passé les occupations permanentes des sols au débouché ou dans la plaine des petits bassins versants naturels. Ce n'est que depuis quelques décennies que l'urbanisation gagne progressivement le lit moyen des petits cours d'eau, voire leur lit mineur ; il est assez courant de rencontrer des habitations chevauchant des couvertures de cours d'eau et des canalisations d'assainissement pluvial.

...accompagnée d'une artificialisation progressive dommageable...

L'écoulement des eaux de ruissellement dans le tissu urbain a bien souvent été enterré lors des grandes extensions urbaines, et de ce fait, les axes majeurs des écoulements ont été perdus de vue par la plupart des acteurs de l'urbanisme. Les fonctions des cours d'eau se sont réduites au transport des eaux usées et des eaux pluviales urbaines. Les cours d'eau ont été parfois couverts au bénéfice de la circulation automobile, certains bras morts ont été asséchés, des cuvettes ont été fermées par le tissu urbain sans que subsiste aucun autre exutoire que le collecteur. Il apparaît alors que les ouvrages d'évacuation
hydraulique, aussi largement dimensionnés soient-ils, se trouvent un jour insuffisants pour faire face à un événement d'une ampleur exceptionnelle, qu'une urbanisation inconsidérée peut alors transformer en catastrophe.

...doublée d'une insouciance technique et économique

L'absence de référence aux événements passés et la rationalisation des méthodes de calcul ou de production des ouvrages a souvent conduit à concevoir et réaliser des aménagements de capacité d'évacuation très inférieure au lit majeur de ces cours d'eau. Par ailleurs, les ouvrages d'assainissement d'eaux pluviales sont très souvent traversés par d’autres réseaux. Si les pertes de charges induites par ces derniers sont généralement faibles, elles constituent autant d'obstacles aux matériaux transportés lors des crues.

■ La situation du risque pluvial

En nombre d'événements, il s'agit de la première cause de reconnaissance de l'état de catastrophes naturelles. Il convient de noter qu'il peut en

Carte 1 - CATNAT «Inondations et coulées de boues» depuis 1982.
résulter une modulation des franchises applicables ${ }^{1}$. Ces situations sont liées à une gestion défaillante de l'évacuation des eaux pluviales. Les ouvrages sont dimensionnés pour une pluie de référence donnée, fréquemment infradécennale, sans que l'on se soit interrogé sur les conséquences à attendre de la survenue d'un événement plus important (effet de seuil, cheminement des eaux, etc.).
L'exploitation des dossiers CATNAT pour le type «inondations et coulées de boue» ${ }^{2}$, révèle que plus de 75% des communes ont été concernées depuis 1982, soit 26682 communes en juin 2002

Si, la plupart de ces déclarations de l'état de catastrophe naturelle peuvent relever d'aménagements sommaires du réseau hydrographique, voire relever du domaine de la conception et de l'entretien des dispositifs d'assainissement pluvial, certaines constituent des catastrophes majeures rappelant nos limites: Saint-Jean-de-Luz en 1983, Nîmes en 1988, Le Teil en 1988, Narbonne en 1989, Brest en 1989, Fréjus en 1990, Orange en 1991, la Seine-Maritime en 1997, Marseille en 2000.

Cinquante villes sensibles...

Après les inondations catastrophiques de Nîmes du 3 octobre 1988, une mission technique dirigée par M. Ponton, ingénieur général des Ponts et Chaussées, chargée d'étudier les suites à donner à la catastrophe, a recensé une cinquantaine de villes sensibles à des événements comparables, réparties sur seize départements du grand sud:
«Cette inondation a présenté, en effet, un caractère particulier, puisqu'elle a été provoquée par des précipitations très violentes sur plusieurs petits bassins pentus dominant la ville, et dont les eaux de ruissellement avaient été enfermées dans un réseau pluvial d'assainissement urbain qui s'est révélé très insuffisant.
Il ne s'agit donc pas d'un cas d'inondation classique par des cours d'eau importants, qui font l'objet de diverses dispositions légales et réglementaires, et de systèmes éprouvés d'annonces de crues, qui ne sont pas remis en cause par cette catastrophe ».

...dans seize départements

Ce travail a permis d'identifier des territoires et des agglomérations plus particulièrement menacés par une catastrophe analogue à celle de Nîmes [voir Annexes]. Le premier critère pris en compte est l'aléa météorologique concentré sur une surface relativement limitée. Trois zones ont ainsi été identifiées :

- les départements du sud-est (avec des orages de plus de $100 \mathrm{~mm} / \mathrm{h}$, pouvant dépasser $200 \mathrm{~mm} / \mathrm{h}$): Pyrénées-Orientales, Aude, Hérault, Gard, Bouches-du-Rhône, Var, Alpes-Maritimes, Corse-du-Sud, Haute-Corse, Ardèche, Lozère;
- une seconde zone avec des épisodes moins intenses ($70 \mathrm{~mm} / \mathrm{h}$): Ariège, Drôme, Vaucluse, Alpes-de-Haute-Provence, Hautes-Alpes et Pyrénées-Atlantiques;
- enfin quelques départements où l'on a enregistré des épisodes de plus de $100 \mathrm{~mm} / \mathrm{h}$ (Haute-Vienne) ou de $70 \mathrm{~mm} / \mathrm{h}$ (Eure, Haute-Marne, LoireAtlantique, Nièvre, Lot).

[^0]
Evénement exceptionnel ou pas?

À l'échelle d'une région comme le LanguedocRoussillon, des précipitations supérieures à 200 mm par heure en vingt-quatre heures sont loin d'être si exceptionnelles. Sur les cinquante dernières années, cent trente événements comparables ont été recensés. Si ces pluies diluviennes sont fréquentes, leur ampleur géographique reste limitée dans la plupart des cas. Depuis 1940, on relève quatre épisodes d'ampleur géographique exceptionnelle, en octobre 1940 dans les Pyrénées-Orientales, en septembreoctobre 1958 dans le Gard, en novembre 1999 dans l'Aude et en septembre 2002 dans le Gard.

- Une modularité dans l'action

Le ruissellement pluvial se caractérise souvent par la rapidité de la crue, laissant peu de temps pour réagir et peut, dans les cas extrêmes, piéger des habitants chez eux, ou des automobilistes engagés sur une route située dans un chenal d'écoulement.

Cette rapidité de la montée des eaux (quelques minutes à quelques heures) laisse donc peu de place pour une organisation de la diffusion de l'information auprès de la population et la mise en place d'un dispositif de secours en cas de forte probabilité d'apparition d'une crue.

Choisir une période de retour, c'est choisir une fréquence de défaillance des ouvrages d'assainissement pluvial. Cette défaillance, lors d'événements pluvieux plus importants, devra être prise en considération lors de la conception et de la gestion afin de préserver les vies humaines et de réduire les impacts.

L'analyse des conséquences des insuffisances des axes drainants et des réseaux d'assainissement pluvial doit conduire les collectivités territoriales à s'intéresser aux cheminements des eaux dans le tissu urbain, à prendre les mesures de sécurité nécessaires pour les zones affectées. L'obligation de tenir compte du risque connu dans l'élaboration de la règle d'urbanisme
s'impose à l'évidence aux communes, le juge administratif sanctionnant toute méconnaissance de cette obligation.
L'État a les moyens juridiques d'imposer aux communes la prise en compte de risques dans le PLU, soit en élaborant un PPR, soit par l'intermédiaire d'un PIG.

Toutefois, la commune est tenue de faire preuve d'initiative en la matière. La non prise en compte de risques connus dans un PLU entache ce dernier d'illégalité et il en va de même pour un SCOT. En outre, une commune ne peut prendre prétexte de la carence de l'État en matière de définition des zones à risques pour se soustraire à cette obligation.
L'apparition de phénomènes pluvieux très intenses implique, pour les collectivités territoriales, d'aborder l'aménagement de l'espace urbain sous l'angle du risque d'inondation par ruissellement superficiel. Le risque pluvial majeur doit être intégré dans les opérations d'urbanisme.
Des simulations du devenir des eaux de ruissellement, pour des épisodes d'occurrence décennale, centennale voire exceptionnelle, doivent permettre de prévoir des dispositions pour limiter leurs impacts. Ceci revient en quelque sorte à rechercher des périodes de retour croissantes d'insuffisance en allant de l'amont vers l'aval.

Par ces principes on va au-delà de la notion de période d'insuffisance. La conception intègre l'évolution spatiale du ruissellement dans le cas de pluies exceptionnelles et prévoit par conséquent un aménagement adapté.
Lorsqu'un site est équipé de plusieurs aménagements, l'étude et la gestion de l'ensemble reste une nécessité. En effet, lorsque les techniques sont conçues d'une manière indépendante et isolée, la concomitance des débits surversés peut engendrer des débits de pointe importants à l'aval. Ces débits peuvent même parfois être encore plus forts que ceux engendrés sans la mise en œuvre de ces techniques.

Pour la collectivité territoriale, il est donc indispensable de procéder à une étude globale à l'échelle de l'ensemble du bassin versant concerné par ces ouvrages en simulant leur comportement face à différentes pluies.
Cette démarche est à même de réduire la vulnérabilité des territoires et donc de limiter le nombre de reconnaissances de l'état de catastrophe naturelle.

Par ailleurs, les possibilités offertes par les PPR, élaborés et mis en application par l'État, après l'identification des cheminements de l'eau pour des crues rares, pour gérer le risque pour les vies humaines présenté par les crues correspondantes reposent sur des dispositions types comme :

- la création d'un niveau refuge au dessus des plus hautes eaux connues pour les constructions existantes,
- l'interdiction des nouvelles constructions en zone d'aléa fort,
- le maintien, voire la restauration, du libre écoulement des eaux, etc.
Il s'y ajoute généralement des mesures destinées à limiter les dommages aux biens. La mise en œuvre du concept d'assainissement en système majeur et système mineur peut être une réponse intéressante en matière d'aménagement urbain. Dans ce concept, l'assainissement est composé d'un système classique de

Deux certitudes

La première est que l'assainissement souterrain ne peut prétendre à évacuer des crues exceptionnelles dans des conditions économiques satisfaisantes.
La seconde est que la non-prise en compte de crues rares dans le développement urbain ne peut que conduire à des catastrophes. Il est en revanche possible de prévoir à l'avance les conséquences des crues rares et d'identifier les biens affectés.
Par ailleurs, le coût des mesures de prévention et de protection mis en parallèle au coût des dommages, selon différentes hypothèses, constitue une étape dans la démarche de prise en compte du risque pluvial.

Des difficultés

La première est la prise en compte dans les réflexions d'aménagements des événements rares et l'identification de leurs conséquences.
La seconde est la définition et la mise en œuvre des mesures pour assurer le libre cheminement de l'eau dans le tissu urbain,
La troisième est notre capacité d'élargir les débats pour inscrire les projets dans une logique globale de gestion de l'espace afin de définir un territoire cohérent d'action et de décision,
Enfin, l'organisation des acteurs concernés peut être une source supplémentaire de difficultés.
collecteurs superficiels ou souterrains capables d'évacuer un événement de faible période de retour (de l'ordre de deux à cinq ans), appelé système mineur et d'un système majeur constitué par les voiries. Ces dernières recevant les écoulements excédentaires sont calculées pour assurer une protection contre un événement rare. Cela signifie bien sûr que l'organisation de la ville est entièrement conditionnée par le contrôle du ruissellement, ce dernier étant alors un paramètre majeur de l'urbanisme.
On soulignera cependant que le PPR ne peut à lui seul garantir la sécurité des vies humaines. Lors des inondations de l'Aude (1999) et celles du Gard (2002) près de deux victimes sur cinq étaient des automobilistes, ce qui dénote à l'évidence l'importance de l'information préventive pour développer la conscience du risque.

Le ruissellement

Les crues par ruissellement

Le ruissellement est la circulation de l'eau qui se produit sur les versants en dehors du réseau hydrographique lors d'un évènement pluvieux. Sa concentration provoque une montée rapide des débits des cours d'eau, pouvant être amplifiée par la contribution des nappes souterraines.

Il existe différents types de ruissellement :

- le ruissellement diffus dont l'épaisseur est faible et dont les filets d'eau buttent et se divisent sur le moindre obstacle;
- le ruissellement concentré organisé en rigoles ou ravines parallèles le long de la plus grande pente. Il commence à éroder et peut marquer temporairement sa trace sur le versant;
- le ruissellement en nappe, plutôt fréquent sur les pentes faibles, occupe toute la surface du versant.
Le ruissellement est d'autant plus important que les terrains sont plus imperméables, le tapis végétal plus faible, la pente plus forte et les précipitations plus violentes. Mais il demeure un phénomène naturel que l'on ne peut pas empêcher. Malheureusement, l'intervention humaine est parfois source d'aggravation de ce phénomène.

La genèse du ruissellement

Le ruissellement apparaît lorsque les eaux de pluie ne peuvent pas ou plus s'infiltrer dans le sol. Cette incapacité à absorber les eaux apparaît soit lorsque l'intensité des pluies est supérieure à l'infiltrabilité de la surface du sol (ruissellement «hortonien»), soit lorsque la pluie arrive sur une surface partiellement ou totalement saturée par une nappe (ruissellement par saturation). On peut aussi observer une combinaison des deux phénomènes. L'eau qui ruisselle va alors alimenter directement le thalweg en aval.

Dès le début d'une averse, les sols peuvent s'humidifier par rétention d'une partie de la pluie qu'ils reçoivent. Lorsque le sol refuse l'infiltration, lors d'une averse, il y a stockage de l'eau dans les dépressions de surface du sol, ce qui se traduit par la formation de flaques avant la génération du ruissellement.

Ainsi, la part de l'eau qui va ruisseler n'est pas fixe; elle est variable, en particulier pour les surfaces rurales ou naturelles: maquis, garrigues, landes, herbages, sols emblavés, forêts, etc. En fonction du degré de sécheresse des sols et de leur couverture végétale, une pluie modérée peut ne pas générer de ruissellement: l'eau est alors retenue par la végétation ou elle s'infiltre.

Pour les épisodes pluvieux les plus intenses, les débits et les volumes de crue engendrés par l'urbanisation sont pratiquement identiques à ceux générés par un bassin versant dont les sols sont saturés. Il en résulte que des communes peu exposées à des crues fréquentes peuvent être gravement endommagées par les crues rares.

Les facteurs aggravants

Le couvert végétal

La nature des sols et du couvert végétal des bassins versants sont des éléments importants. La végétation favorise la rétention de la pluie en la retenant et en l'absorbant, surtout si elle a formé, au cours du temps, un sol humifère épais. Les terrains à forte végétalisation ont donc moins tendance à ruisseler que les sols nus. La protection mécanique du sol qu'offre le couvert végétal réduit également la charge solide de l'eau (argile, limon, etc.) qui ruisselle.

À l'inverse, un sol peu végétalisé favorisera le drainage des eaux et conduira à des temps de réponse beaucoup plus courts qu'un sol forestier ou herbeux dense. La perméabilité des sols pourra également jouer un certain rôle en terme de coefficient de ruissellement.

Cependant, pour des précipitations très intenses, ce dernier aspect peut être relativement secondaire et ceci d'autant plus que les bassins sont plus pentus et moins végétalisés. Sous de tels épisodes les terrains naturels ou ruraux peuvent atteindre assez rapidement un certain degré de saturation tel que le ruissellement superficiel qui se forme est alors évacué par le réseau d'écoulement, sans pertes importantes par infiltration.
Lorsque la végétation ne permet pas de dissiper l'énergie cinétique de la pluie, la formation sur les sols de croûte de battance peut transformer les pluies longues et peu intenses en des événements générateurs de fort ruissellement.

Le travail du sol et la battance

Le sol est généralement constitué d'agrégats dont la disposition dans l'espace varie selon ses conditions de formation et les divers remaniements qu'il subit. Les espaces existants entre ces divers agrégats constituent la porosité du sol. C'est dans ce réseau d'espace libre que circulent les eaux infiltrées.

Une terre tassée et desséchée favorise un déclenchement rapide du ruissellement qui sera, au contraire, retardé si la même terre a été labourée récemment.

Avant la puie

Après 100 mm de pluie

Fig. 1-Le phénomène de battance : la texture de la surface du sol change : granuleuse au début puis plus lisse. Les différences de couleur dans la photo de gauche traduisent une différence dans le type d'encroûtement [d'après Estèves - LTHE].

La battance est un phénomène surtout observé sur les sols limoneux. L'impact des gouttes d'eaux peut contribuer à désagréger la structure du sol. Les agrégats se réorganisent alors en feuillets ne laissant aucun vide entre eux [fig.1]. La porosité est quasiment nulle. C'est ce qu'on appelle une croûte de battance. Les eaux de pluie ne s'infiltrant plus, elles ruissellent dans leur quasi totalité.

La saturation

Le sol, matériel poreux, réagit comme une éponge absorbant une partie de la pluie. Lorsque les espaces poreux sont remplis et que la vitesse de pénétration dans le sol tend vers zéro, on dit que le sol est saturé. Une pluie modérée peut avoir saturé, partiellement ou totalement, le sol, avant le déclenchement d'une averse.

Ainsi, en cas de pluie suffisamment intense et prolongée, la proportion d'eau qui ruisselle sur les zones rurales peut atteindre (en débit de pointe) des valeurs du même ordre que sur les sols imperméabilisés.

L'évolution de la zone non saturée

La zone non saturée est le siège de l'infiltration vers la nappe. L'épaisseur de cette zone saturée fluctue avec le degré de remplissage de l'aquifère. Le niveau de l'aquifère monte pendant les périodes pluvieuses et baisse pendant les périodes sèches. Après une longue période pluvieuse, une remontée du niveau de la nappe peut favoriser la saturation des sols en surface et générer également de forts ruissellements pour de faibles lames d'eau précipitées.

Les caractéristiques du bassin versant

L'estimation des apports en eau met en évidence les aléas et leur quantification. Cependant l'évaluation de ces apports passe nécessairement par une bonne connaissance des bassins versants et des sous bassins versants, unités élémentaires de production du ruissellement.
La topographie et la nature des bassins versants à l'amont d'un secteur inondable sont des facteurs déterminants. Les bassins auront des temps de
réponse d'autant plus courts, et donc des débits d'autant plus importants, que la pente moyenne de leur réseau d'écoulement sera plus accentuée. Les fortes pentes engendrent des vitesses d'écoulement plus élevées. Les effets destructeurs de l'eau résultent souvent de son énergie cinétique (entraînements d'objets et de personnes, effondrements de constructions au point d'impact par choc, etc.).

la définition du bassin versant

Etant donné une section d'un cours d'eau, l'eau, qui transite à travers cette section lors d'un événement pluvieux, provient d'une surface bien délimitée que l'on appelle le bassin versant. Cette section se définit alors comme l'exutoire du bassin versant [fig.2].

Topographiquement, le bassin versant est donc limité par une ligne de crête. Ainsi les eaux ruisselant ou s'écoulant à l'intérieur de la ligne de crête atteignent toutes le cours d'eau en amont de l'exutoire. Cette ligne de crête, souvent très nette et facile à identifier, est parfois très peu marquée et très peu apparente sur les terrains à faible relief où la surface drainée peut varier en

Fig. 2 - Distinction entre bassin versant réel et bassin versant topographique.

fonction de la hauteur de la lame d'eau ruisselée. Cette délimitation topographique n'est pas suffisante, surtout lorsqu'un sol perméable recouvre un substratum imperméable. Dans ce cas, on distinguera un bassin versant réel.

À chaque section d'un réseau hydrographique correspond donc un bassin versant qui lui est propre.

Les caractéristiques physiques et fonctionnelles engendrant le ruissellement

L'eau de pluie, tombée en un point quelconque de la surface du bassin versant, si elle n'a pas été évaporée ou échangée avec des couches profondes, va transiter par l'exutoire. On notera qu'en crue le réseau hydrographique est principalement alimenté par des eaux de ruissellement, alors qu'en étiage son débit provient du drainage des nappes.
La notion de ruissellement est donc intrinsèque à la définition même du bassin versant. La plupart des paramètres définissant le bassin versant influence ainsi la genèse du ruissellement.

La superficie des aires de collecte

La superficie des aires de collecte est le principal indicateur de l'importance d'un bassin versant. C'est aussi un paramètre fondamental dans la quantification du ruissellement. Pour une occupation de sol donnée, plus l'aire de collecte est grande, plus le volume ruisselé sera important à l'exutoire.

La topographie

Les gradients de pente sont propices à la formation de ruissellement. En effet, sur terrain plat ou à faible pente, les eaux ont tendance à stagner et à s'infiltrer sous l'influence de la gravité. En revanche sur terrains pentus, cette même gravité incite les gouttes d'eaux à dévaler la pente vers les points bas. Plus la pente est forte, plus les vitesses d'écoulement sont importantes. L'écart entre la vitesse d'écoulement et la vitesse d'infiltration devient plus important et le ruissellement augmente.
Ainsi, l'observation des gradients de pentes sur une carte topographique permet de déceler des zones à risques vis-à-vis du ruissellement.

La pédologie

Le ruissellement des eaux de pluie est directement lié à la saturation du sol et à la vitesse d'infiltration. Cette dernière est propre à chaque type de sol et fonction de sa porosité ffig. 3, 4 et 5].

Pour un sol macro poreux, le mécanisme qui prévaut est l'écoulement gravitaire à travers les

Fig. 3 - Régime d'infiltration en fonction du temps pour différents types de sol.

Sol infihration capacity deqreases acepeding on cumplative rainfall, with formation of the sesling crust (INRA)

Fig. 4 - Régime d'infiltration en fonction du cumul pluviométrique et évolution de la structure du sol [d'après Floodgen-Inra, 2000].

Fig. 5 - Régime d'infiltration et capacité d'infiltration d'un sol.
macropores. Pour un sol microporeux, le mécanisme essentiel est la rétention par capillarité et donc la saturation rapide.
La porosité du sol est liée à ses éléments constitutifs. Les sols sont ainsi classés en fonction de leur texture. Cette classification s'articule autour de trois pôles : sables, argiles, limons.

Du point de vue de la perméabilité, les pôles extrêmes sont les sables macroporeux (bonne perméabilité) et les argiles microporeuses (imperméables), les limons constituant le pôle intermédiaire.

En définitive, les sols argileux sont les plus aptes à engendrer le ruissellement.

La géologie

La géologie, qui constitue l'étude des couches souterraines situées sous le sol, n'intervient pas directement sur la genèse du ruissellement. Ces effets ne peuvent avoir lieu qu'après les mécanismes d'infiltration dans le sol. Deux exemples peuvent être donnés :

- la présence d'une couche imperméable (argile) sous le sol. L'infiltration est stoppée au niveau de la couche imperméable, l'eau s'accumule dans la couche pédologique puis la sature;
- la présence d'une nappe à faible profondeur selon le même principe par infiltration, l'aquifère se remplit et le niveau de la nappe monte jusqu'à affleurement. Le sol est donc saturé /voir «L'évolution de la zone non saturée», p. 9].

L'occupation du sol

Ce paramètre influe directement sur le coefficient de ruissellement.

Une surface bâtie favorisera plutôt le ruissellement. En effet, la rétention de la pluie dans ces structures est quasiment nulle et l'eau ne peut s'infiltrer. Pratiquement toute l'eau ruisselle. Le terme de surface imperméabilisée est alors employé. L'urbanisation génère, pour les épisodes les plus courants, ainsi une augmentation des volumes et débits ruisselés, une concentration des ruissellements, une réduction des temps de propagation des écoulements, une réduction des capacités de stockage et d'épandage des volumes excédentaires, une augmentation des entraves à l'écoulement.

Les sols agricoles montrent une grande variabilité au ruissellement. Les cultures et pratiques culturales peuvent contribuer à aggraver les phénomènes de ruissellement. Les parcelles céréalières sont, par exemple, plus aptes à absorber la pluie que les parcelles où sont cultivées les plantes sarclées. En effet, les longs sillons de terres nues laissés pour la culture de ces dernières favorisent le ruissellement surtout si ils sont dans le sens de la pente. En outre, les sols nus entre les périodes végétatives, le drainage intensif, la suppression

L'agriculture moderne augmente le ruissellement
Le passage de la polyculture à la monoculture et la mécanisation ont provoqué une augmentation de la taille des parcelles. D'un point de vue pratique, l'agriculteur a alors éliminé du paysage de nombreux éléments structuraux gênant la circulation des engins. Ainsi, des haies ont été arrachées, des fossés et des mares comblés, des talus rasés, des chemins communaux supprimés. Ces structures favorisaient l'infiltration des eaux de ruissellement et leur stockage et limitaient leur concentration. La capacité de stockage du bassin versant se voit donc amoindrie.
de haies et fossés, etc. sont autant de facteurs aggravants pour la production du ruissellement.

Toutefois, le comportement de la parcelle vis-à-vis du ruissellement varie selon la saison. En période végétative, l'eau de pluie sera en grande partie absorbée pour les besoins de la plante. En outre, l'encombrement de la parcelle par les structures végétales est un frein au ruissellement. Par contre, après la récolte, le sol nu et tassé va favoriser un déclenchement rapide du ruissellement. Le ruissellement pourra être d'autant plus important que la récolte sera effectuée juste avant l'été, période propice aux événements pluvieux intenses.

Les axes d'écoulement

Les axes d'écoulement se définissent grâce à l'étude topographique. Cette étude s'avère nécessaire car s'il est aisé de repérer les vallées ou les thalwegs en terrain accidenté, la détermination des axes d'écoulement sur un terrain peu pentu n'est pas toujours facile. L'urbanisation peut alors s'installer sur un axe majeur créant une barrière à l'écoulement.

L'étude de ces axes d'écoulement permet de préciser les parcours à gérer en temps de crise aussi bien pour la protection des personnes et des biens que pour l'efficacité de l'acheminement des secours. Ce sont aussi les axes qui seront en eau en cas d'insuffisance des ouvrages de protection.

$■$ L'occupation des thalwegs

Axe drainant et obstacle à l'écoulement

Le risque d'inondation est particulièrement aggravé par la multiplication, en particulier dans les agglomérations, d'obstacles dans les axes d'écoulement. Ils provoquent ou augmentent les débordements, ils accroissent les hauteurs de submersions, etc. Ils sont souvent euxmêmes, détruits ou endommagés par la crue et constituent, ainsi, autant de vulnérabilités.

Ces obstacles à l'écoulement prennent différentes formes. Il peut s'agir:

- de l'occupation (urbanisation, activités, etc.) du fond du thalweg;
- d'empiétements sur les flancs;
- de rétrécissement généralisé par multiplication d'empiétements;
- du retracé contraint et «anguleux» des cours d'eau;
- du comblement du thalweg;
- d'effet de barrière: il s'agit de l'édification d'une rangée de constructions transversalement par rapport à la direction d'écoulement des eaux, d'infrastructures de transport;
- d'urbanisation diffuse se densifiant: dans ce processus, la multiplication d'obstacles à l'écoulement résulte du «mitage» progressif, de plus en plus dense, d'un territoire qui était rural et dans lequel les risques sont inhérents à une situation topographique et hydrographiques particulières.

L'urbanisation «à effet de barrière», c'est-àdire une urbanisation continue transversalement à la direction d'écoulement des eaux, accroît l'aléa d'inondation en augmentant les hauteurs de submersion des biens exposés. Ces constructions subissent un aléa qui préexistait mais qu'elles ont aggravé. La barrière aggrave également l'inondation en amont: des terrains qui n'étaient pas inondables peuvent ainsi le devenir.

La présence de ces obstacles peut dans certain cas expliquer à elle seule le phénomène d'inondation. Il est donc impératif d'identifier les axes d'écoulement aval aux zones de production du ruissellement. Ils sont de deux types :

- les axes courants : outre les rivières, il s'agit des fonds topographiques : thalweg, vallée sèche. Ces axes ne sont pas toujours identifiables à l'œil nu surtout dans les zones où les dénivelées topographiques sont faibles. Il est essentiel de s'appuyer sur l'outil cartographique ;
- les axes exceptionnels: lors d'événements pluvieux importants, les obstacles édifiés sur un axe d'écoulement naturel, ou les dérivations volontaires des lits de cours d'eau peuvent engendrer la dérivation d'un débit important sur une voie d'écoulement inattendue.
Il est donc important d'appréhender les mécanismes d'écoulement et de débordement, et d'identifier les points les plus critiques.

La concentration des écoulements

Il s'agit de secteurs à la confluence de plusieurs axes d'écoulement. Le cumul des écoulements en provenance de ces divers secteurs d'apport engendre le débordement. Le risque est d'autant plus grand que les temps de concentration des sous bassins versants amonts sont comparables. Il peut se produire alors un cumul des débits de pointe au point de rencontre. Ce phénomène est particulièrement aigu dans les cas de «pièges à eau» dans lesquels l'eau d'inondation peut s'accumuler sans possibilité d'évacuation gravitaire.

L'insuffisance des gabarits d'ouvrage

C'est le cas des ponts franchissant des vallées sèches ou des fonds de thalweg qui ont été busés.
Le cas le plus répandu est l'ouvrage de franchissement offrant une section inférieure à celle du thalweg, ce qui entraîne une surélévation du niveau d'eau à l'amont et favorise ainsi le débordement.

L'autre cas est le cours d'eau canalisé et enterré dans sa traversée du milieu urbain. Le gabarit de la partie canalisée a été prévu pour absorber les crues d'une occurrence donnée. Lorsqu'un événement exceptionnel d'occurrence supérieure survient la crue passe par dessus les ouvrages et poursuit son cheminement dans le tissu urbain.

L'absence d'entretien du lit du cours d'eau

Les propriétaires riverains de cours d'eau non domaniaux sont tenus à un curage régulier pour rétablir le cours d'eau dans sa largeur et sa profondeur naturelles, à l'entretien de la rive par élagage et recépage de la végétation arborée et à l'enlèvement des embâcles et débris, flottant ou non, afin de maintenir l'écoulement naturel des eaux, d'assurer la bonne tenue des berges.

Les produits de coupe (bois morts ou vivants) doivent être retirés du lit mineur et être stockés en dehors de la zone inondable. Ceci limitera la formation d'embâcles en aval.

En résumé...

Le ruissellement est l'expression d'un processus complexe, souvent délicat à appréhender à l'échelle d'un bassin versant. La modification de ce processus peut se traduire par un accroissement des débits et des volumes à l'exutoire des bassins versant lors de précipitation courante. Pour les fortes précipitations, les débits de pointe et les volumes de crue sont du même ordre de grandeur sur un bassin versant à l'état naturel que sur un bassin versant artificialisé.
Les ouvrages d'assainissement ont une capacité d'évacuation limitée. Le risque résiduel doit être géré par des aménagements.

Les effets des inondations par ruissellement sont amplifiés par :

- l'urbanisation dans les axes d'écoulement;
- l'urbanisation dans les lits majeurs, qui diminue la fonctionnalité des zones naturelles d'expansion des crues ;
- la réduction de la capacité de rétention naturelle des sols en zone agricole, par la suppression des haies, des talus, des prairies et des bosquets, en particulier sur les terrains en pente et par les pratiques culturales (sens des labours, défaut de couverture des sols en hiver, cultures favorisant le compactage des sols) ;
- l'absence d'entretien des cours d'eau et des ouvrages hydrauliques.

Les actions relevant de la compétence des collectivités territoriales

\square Une nécessaire solidarité de bassin versant

Les études conduites à l'échelle d'un bassin versant nécessitent souvent une coopération intercommunale. Les outils juridiques, institutionnels et financiers paraissent aujourd'hui suffisants pour bien appréhender correctement la gestion des thalwegs. Pourtant cette coopération ne va pas généralement de soi : la définition d'objectifs d'aménagement et de gestion collective implique souvent de longues négociations.

Fort du constat que nous ne pouvons pas grand chose sur l'aléa météorologique, c'est sur la concentration des eaux et sur ses conséquences qu'il faut agir. Il s'agit d'intervenir le plus en amont possible en développant les actions permettant de réduire le ruissellement et leur concentration (piéger dès la parcelle une partie des précipitations, limiter la concentration des ruissellements, diminuer leur vitesse, retenir et stocker les excédents sur les chenaux d'écoulement, améliorer les écoulements aux exutoires, revégétaliser certaines parties des bassins versants). La combinaison des actions apportera l'efficacité maximale.

Les alternatives d'aménagement du territoire existent:

- l'infléchissement de la planification urbaine (diminution quantitative et/ou spatiale dans les zones inondables, redéploiement hors champ d'inondation);
- la gestion des eaux pluviales à l'amont des plaines;
- la réservation des lits des cours d'eau à l'aval (constitution d'espaces verts urbains ou périurbains);
- les travaux ponctuels permettant d'augmenter la capacité de transit du lit du cours d'eau ou des ouvrages.

Aucune action ni préventive ni curative ne permettant de se prémunir totalement, la seule parade aux événements exceptionnels consiste à réduire la vulnérabilité des territoires concernés.

Les actions et les initiatives des collectivités territoriales

Les possibilités d'initiatives et d'actions des collectivités (les communes ou leurs groupements) sont à même, en vertu des compétences générales confiées par les lois de décentralisation et des possibilités ouvertes par la loi $n^{\circ} 92-3$ sur l'eau du 3 janvier 1992 (notamment son article 31 3) d'impulser et de mener à bien des opérations dans le domaine de l'assainissement pluvial, du ruissellement et de lutte contre les inondations.

L'article 1er de la loi n° 2000-1208 relative à la solidarité et au renouvellement urbain du 13 décembre 2000 précise, notamment, que les schémas de cohérence territoriale, les plans locaux d'urbanisme et les cartes communales déterminent notamment les conditions d'une gestion des eaux, d'une prévention des risques naturels prévisibles et des pollutions et nuisances de toute nature. L'article 3 de ladite loi précise que les incidences prévisibles sur l'environnement des orientations découlant du projet d'aménagement et de développement durable retenu doivent être appréciés et qu'à ce titre ils définissent les objectifs relatifs à la prévention des risques.

L'ensemble des prescriptions techniques contenues dans les divers documents réglementaires doivent concourir à assurer la sécurité des biens et des personnes.

[^1]
Quelques principes

Tout système d'assainissement se réfère à une pluie de projet pour sa conception et sa gestion courante.
Il est de la responsabilité de la collectivité territoriale d'étudier le comportement des éléments constitutifs du système d'assainissement pour des pluies dépassant leurs performances. Ces études doivent en particulier s'attacher à comprendre les conditions d'écoulement superficiel et évaluer les risques pour les biens et les personnes. Elles concourent à la recherche d'un niveau de risque acceptable. Cette notion présuppose qu'un consensus se soit préalablement dégagé sur le niveau de service ou de sécurité rendu par l'équipement et le coût de ce service.
La norme NF-EN 752-2 définit par ailleurs dans son article 6 les performances à atteindre, notamment en terme de fréquence d'inondation, pour les zones rurales (10 ans), les zones résidentielles (20 ans), les centres villes (30 ans) et les passages souterrains (50 ans).
L'approche économique définit quant à elle le niveau de service minimum, c'est-à-dire en dessous duquel il n'est pas rationnel de descendre.

Le SAGE, au niveau d'une rivière, doit indiquer des objectifs en terme de maintien des écoulements et de prévention des crues tout en recherchant la mise en valeur de l'espace rivière. Le contrat de rivière est la traduction opérationnelle du SAGE.

Le SCOT est l'outil privilégié de la planification inter-communale. C'est la bonne échelle pour définir des principes d'équilibre entre les diverses occupations du sol, par rapport à des contraintes identifiées d'écoulement ou de protection des lieux habités.
Les possibilités de prise en compte du risque de ruissellement par le PLU seront développées dans un paragraphe spécifique. Si le risque est identifié le PAC de l'État permettra d'initier la démarche et de s'assurer que la délimitation des zones U, AU, A et N ainsi que le règlement qui leur est associé prennent bien en compte ce type de risque.
Le zonage pluvial s'appuie sur l'article 35 de la loi $n^{\circ} 92-3$ sur l'eau du 3 janvier 1992 qui a modifié l'article L.2224-10 du Code général des collectivités territoriales et ainsi institué un cadre pour
la mise en œuvre d'une urbanisation intégrant les problèmes d'assainissement et/ou la limitation des débits, et de leurs conséquences dommageables. Le PLU peut délimiter les zones qui en découlent (art. L.123-1 du Code de l'urbanisme).

La circulaire du 12 mai 1995, relative aux systèmes d'assainissement de plus de 2000 équiva-lent-habitants, renforce la possibilité de limiter le ruissellement en demandant aux grandes agglomérations d'explorer les possibilités de mise en œuvre de techniques alternatives dans leur programme d'assainissement.
Les règlements de lotissement offrent également la possibilité de décliner des prescriptions du PLU vis-à-vis des clôtures, de niveaux habitables, des surfaces de parcelles, du coefficient d'occupation du sol, etc.
Enfin, le permis de construire est le dernier stade où l'on peut vérifier que toutes les prescriptions des documents précédents ont été prises en compte si ce n'est que les pièces demandées au permis de construire ne permettent pas de vérifier les prescriptions en terme de construction (mais seulement celles liées à l'urbanisme). Dans la pratique on constate que les instructeurs de permis rappellent l'ensemble des prescriptions y compris celles contenues dans le PPR qui concerne des règles de construction.

L' État doit vérifier la compatibilité entre ces

 documents en veillant plus particulièrement sur les objectifs poursuivis par la collectivité territoriale en terme de protection des lieux habités.Les deux «outils» à privilégier par les collectivités territoriales pour prendre en compte le phénomène de ruissellement sont le zonage pluvial et le PLU.

> Les POS approuvés n'ont pas disparu. Ils continuent à produire leurs effets à l'égard notamment des demandes d'occupation et d'utilisation du sol (certificats d'urbanisme, permis de construire, lotissements, etc.). Le POS ne deviendra PLU que le jour où la délibération du conseil municipal approuvant la révision du POS sera devenue exécutoire.

■ Les possibilités offertes par le zonage pluvial

Le zonage pluvial est une phase essentielle dans l'élaboration d'une stratégie de gestion des eaux pluviales. Ce document permet d'intervenir tant au niveau de la zone urbaine déjà desservie par un réseau collectif que sur l'urbanisation future et même les zones agricoles.
La définition correcte des zones conditionnera totalement le choix des solutions techniques qui pourront être utilisées. De façon générale des propositions peuvent le plus souvent être différenciées selon un critère topographique : zones de production et d'aggravation de l'aléa, zones d'écoulement et zones d'accumulation.

Pour les zones de production et d'aggravation de l'aléa

Il faut limiter les effets de l'imperméabilisation, déterminer des débits de fuite maximum par rapport à la pluie retenue après divers scénarios (décennale, centennale voire exceptionnelle) et localiser les zones de stockages collectifs qui pourront donner lieu à des emplacements réservés au niveau du PLU. Le document de zonage pourra préconiser une méthode d'évaluation des volumes à stocker et éventuellement présenter des exemples pratiques. Il pourra également indiquer la nécessité de réaliser des espaces boisés sur des surfaces minimales ou de préserver des plantations sur des espaces laissés libres. Le principe de la création d'espaces verts en légère dépression afin de constituer des volumes de rétention peut également être affirmé.

Les zones d'érosion

Le nouveau chapitre IV du Code rural, art. L.114-1 (art. 49, loi n° 2003-699, 30 juillet 2003), donne la faculté au préfet de délimiter des zones dites «zones d'érosion» dans lesquelles l'érosion des sols agricoles peut créer des dommages importants en aval. Il établit un programme d'actions visant à réduire cette érosion. Certaines pratiques agricoles peuvent être rendues obligatoires et bénéficier d'aides lorsqu'elles induisent des surcoûts ou des pertes de revenus.

Les zones agricoles peuvent faire l'objet de propositions concernant:

- l'entretien de la surface du sol, pour éviter la formation d'une croûte de battance;
- l'aération du sol entre les périodes de végétation;
- le maintien des chaumes après la moisson;
- le développement des fossés de drainage avec limitation des débits;
- l'organisation de l'exploitation avec des parcelles diversifiées.

Pour les zones d'écoulement

On devra recommander des marges de recul de 10 à 20 m pour les constructions nouvelles par rapport aux axes drainants de types cours d'eau et thalwegs. De même, on pourra préconiser des fondations spéciales qui résistent aux phénomènes d'érosion et d'affouillement, des dispositions pour l'organisation du bâti et proposer des choix de clôtures ajourées, voire les interdire.

Concernant les zones agricoles des mesures simples doivent être préconisées pour réduire l'écoulement vers l'aval :

- la mise en place d'ouvrages légers de ralentissement de l'écoulement;
- des chemins d'accès transversaux à la pente;
- des fossés à débit limité.

Pour les zones d'accumulation

Les mesures qui peuvent être préconisées sont:

- l'emploi de matériaux insensibles à l'eau;
- la construction sur vide sanitaire à une cote imposée;
- le renforcement des fondations et des murs;
- la mise hors d'eau des réseaux publics (énergie, télécommunication, etc.);
- la création d'accès permanents en particulier pour les besoins d'évacuation;
- la restriction aux sous-sols enterrés;
- le recalibrage des lits et berges des cours d'eau pour améliorer les capacités hydrauliques en aval et donc réduire la submersion (hauteur et durée).

Le zonage d'assainissement des eaux pluviales	
Phases principale	Tâches élémentaires
	- Enquête auprès des services, des habitants
Analyse	- Analyse hydrogéomorphologique
d'opportunité	
	- Ilculs sommaires (débits régionaux, etc.)

La démarche de zonage pluvial

La réalisation d'un tel zonage ne présente pas de difficulté particulière mais il doit comprendre au moins les trois phases principales rappelées cidessus.

Suivant le niveau de risque l'étude pourra se limiter à l'analyse d'opportunité.
Le zonage n'étant pas en tant que tel opposable aux tiers, les résultats de l'étude devront figurer:

- dans le règlement d'assainissement de la commune pour une partie des prescriptions;
- dans le PLU en grande partie dans le zonage et le règlement, le zonage eaux pluviales dans son intégralité pouvant figurer dans l'annexe.

Les possibilités offertes par la démarche PLU

Le rapport de présentation, suivant l'article R.1232 du Code de l'urbanisme, doit expliquer les choix retenus pour établir le projet d'aménagement et de développement durable. Il expose également les motifs des limitations administratives à l'utilisation du sol. Il évalue enfin les incidences des orientations du plan sur l'environnement.

Le projet d'aménagement et de développement durable dont le contenu est fixé par l'article R.123-3 du Code de l'urbanisme définit les orientations d'urbanisme et d'aménagement en vue de favoriser le renouvellement urbain en préservant les grands équilibres environnementaux.
Le règlement du PLU doit fixer les règles applicables à l'intérieur de chacune des zones U, AU, A et N dans les conditions prévues à l'article R.123-9 du Code de l'urbanisme.

Les zones urbaines « U »

Sont classés ainsi les secteurs, ou les équipements publics, ayant une capacité suffisante pour desservir les constructions dans des conditions satisfaisantes.

Les zones urbaines «AU »

Ces zones sont destinées à être ouvertes à l'urbanisation. Deux cas peuvent se présenter:

- les voies publiques, les réseaux sont suffisants en périphérie. Les projets d'aménagement et de développement durable ainsi que le règlement définiront les conditions d'aménagement et d'équipement;
- les équipements en périphérie n'ont pas la capacité suffisante et dans ce cas l'ouverture à l'urbanisation sera subordonnée à la modification du plan local d'urbanisme.

Les zones agricoles «A"

Suivant l'article R.123-7 du Code de l'urbanisme elles correspondent aux secteurs de la commune à protéger en raison du potentiel agronomique biologique et économique des terres agricoles.

Les zones naturelles « \mathbf{N} »

Elles représentent pour la commune les secteurs à protéger en raison de la qualité des sites, des milieux naturels, des paysages et de leur intérêt esthétique, historique ou écologique (article R.123-8 du Code de l'urbanisme).

Le règlement du PLU

Le contenu facultatif du règlement du PLU est énoncé de façon exhaustive à l'article R.123-9 du Code de l'urbanisme.
Ce règlement peut comprendre en matière de gestion des eaux tout ou partie des règles suivantes :

- n'autoriser les constructions que sous réserve d'une mise à la cote par rapport à la voirie par exemple;
- imposer des profils en travers type de voiries ;
- définir des débits de fuite par rapport à une pluie de projet;
- interdire les commerces pour lesquels la seule règle de limitation de l'emprise au sol ne peut empêcher de grandes imperméabilisations;
- exiger des mesures compensatoires à l'imperméabilisation avec éventuellement un «mode opératoire»;
- exiger des volumes de rétention par un ratio de X m³/ha imperméabilisé;
- imposer des «reculs» pour utiliser des techniques de type «noues»;
- imposer des reculs importants par rapport aux axes drainant et ruisseaux existants (par exemple 10 à 20 m);
- exiger des «reculs» lorsque les limites séparatives sont constituées par des fossés;
- limiter l'emprise au sol des constructions;
- limiter la densité de construction;
- permettre ou rendre obligatoire l'utilisation des espaces verts dans leur forme comme lieux de rétention supplémentaire (à réaliser en légère dépression);
- orienter le bâti en particulier le collectif dans le sens du courant;
- indiquer que les remodelages de terrain ne devront pas modifier l'écoulement des eaux;
- interdire des clôtures en murs pleins perpendiculaires au sens du courant. On peut également limiter la hauteur du soubassement;
- interdire les caves et garages en sous-sol;
- si la zone est fréquemment inondée interdire l'assainissement autonome.

On peut également ajouter des prescriptions qui sont en fait des recommandations:

- les branchements électriques devront être hors d'eau;
- les chaudières devront également être hors d'eau;
- les cuves seront amarrées ou lestées avec des évents hors d'eau;
- les branchements d'assainissement devront être munis de clapets anti-retour (règlement d'assainissement);
- les tampons d'assainissement devront être verrouillables de façon à ne pas se soulever lors des mises en charge;
- le stockage de produits flottants ou polluants sera interdit.

Les documents graphiques

Suivant l'article R.123-11 du Code de l'urbanisme les documents graphiques doivent faire apparaître pour le domaine lié à l'eau:

- les secteurs où l'existence de risques naturels (inondations, érosion, affaissement, etc.) justifie l'interdiction ou des conditions particulières de construction ou aménagement;
- les secteurs réservés aux ouvrages publics et installations d'intérêt général et aux espaces verts avec leurs destinations et les bénéficiaires.

Les annexes

Les annexes (art. R.123-14 du C. urb.) indiquent en outre à titre d'information sur un ou plusieurs documents graphiques :

- les schémas des réseaux d'eau et d'assainissement y compris les fossés et les bassins versants concernés en précisant les emplacements retenus pour les stockages et éventuellement les traitements;
- les dispositions des projets de PPR rendues opposables en application de l'article L.562-2 du Code de l'environnement;
- le zonage d'assainissement des eaux pluviales.

La loi SRU maintient par ailleurs la possibilité pour la commune d'instaurer des emplacements réservés pour les ouvrages publics, les installations d'intérêt général et les espaces verts à créer ou à modifier.

■ Les mesures non structurelles

En principe il s'agit de mesures à la charge des collectivités territoriales.
Le point le plus important concerne l'information des populations exposées aux risques avec les dispositions prévues par le décret $\mathrm{n}^{\circ} 90-918$ du 11 octobre 1990, relatif à l'exercice du droit d'information sur les risques majeurs, pris en application de l'article 21 de la loi $n^{\circ} 87-686$ du 22 juillet 19874.

En particulier, le maire établit un document d'information communal qui précise les caractéristiques du risque et les mesures de sauvegarde mises en œuvre pour la sensibilisation, l'information et l'organisation de l'évacuation et des secours.

Concernant les plans de sauvegarde communaux de nombreuses initiatives ont été recensées et en

[^2] des consignes de sécurité devant être portées à la connaissance du public.
l'absence d'un guide on peut indiquer un cadre qu'il s'agira de renseigner.

Ce document comprend le plus souvent une présentation générale reprenant le rôle du maire et du préfet de département en matière de protection civile puis trois grandes parties et des annexes :

- un fond documentaire de base: annuaire communal; cartographie avec recensement des sites sensibles et des populations concernées ; recensement des moyens humains et matériels, propres à la commune ; procédures de réquisition;
- les procédures pour l'organisation communale en situation de crise: recueil de l'alarme et transmission à l'autorité municipale; alerte et caractérisation de l'événement en particulier les bulletins de vigilance émis par Météo-France; définition d'une stratégie d'action; mise en place du PC communal; information des populations; mise en œuvre des procédures d'évacuation;
- les procédures de gestion de la post-crise pour un retour à la normale le plus rapidement possible: assistance aux sinistrés (particuliers, entreprises, agriculteurs); accompagnement du retour à la vie normale.

Ce document est complété par de nombreuses annexes:

- annuaires sur les différents thèmes de l'environnement, de l'équipement, de l'industrie, de l'ordre public, etc.;
- recensement des moyens communaux tels que les approvisionnements alimentaires, en carburant, en eau et électricité, l'assistance sanitaire, les transports, les transmissions, etc.;
- recensement des logements temporaires;
- recensement des moyens associatifs;
- fiches réflexe pour le PC communal (rôle du maire, de la cellule logistique, de communication, d'intervention, etc.);
- messages types pour l'alerte et l'évacuation;
- documents administratifs divers concernant la réquisition, le financement des opérations et les dispositions juridiques.

L'information des habiants

Loi n° 2003-699 du 30 juillet 2003, relative à la prévention des risques technologiques et naturels et à la réparation des dommages (JORF, 31 juil. 2003, pp. 13021-13037) :
Art. 40 - Après le premier alinéa de l'article L.125-2 du Code de l'environnement, il est inséré un alinéa ainsi rédigé :
«Dans les communes sur le territoire desquelles a été prescrit ou approuvé un plan de prévention des risques naturels prévisibles, le maire informe la population au moins une fois tous les deux ans, par des réunions publiques communales ou tout autre moyen approprié, sur les caractéristiques du ou des risques naturels connus dans la commune, les mesures de prévention et de sauvegarde possibles, les dispositions du plan, les modalités d'alerte, l'organisation des secours, les mesures prises par la commune pour gérer le risque, ainsi que sur les garanties prévues à l'article L. 125-1 du Code des assurances. Cette information est délivrée avec l'assistance des services de l'État compétents, à partir des éléments portés à la connaissance du maire par le représentant de l'Etat dans le département, lorsqu'elle est notamment relative aux mesures prises en application de la loi $n^{\circ} 87-565$ du 22 juillet 1987 relative à l'organisation de la sécurité civile, à la protection de la forêt contre l'incendie et à la prévention des risques majeurs et ne porte pas sur les mesures mises en œuvre par le maire en application de l'article L.2212-2 du Code général des collectivités territoriales».
Art. 42 - Après l'article L.563-2 du Code de l'environnement, il est inséré un article L.563-3 ainsi rédigé :
«Art. L.563-3. - I. - Dans les zones exposées au risque d'inondations, le maire, avec l'assistance des services de l'État compétents, procède à l'inventaire des repères de crues existant sur le territoire commиnal et établit les repères correspondant aux crues historiques, aux nouvelles crues exceptionnelles ou aux submersions marines. La commune ou le groupement de collectivités territoriales compétent matérialisent, entretiennent et protègent ces repères ».
«II. - Les dispositions de la loi $n^{\circ} 43-374$ du 6 juillet 1943 relative à l'exécution des travaux géodésiques et cadastraux et à la conservation des signaux, bornes et repères sont applicables ».
«III. - Un décret en Conseil d'État fixe les conditions d'application du présent article».

La méthodologie pour l'élaboration du PPR ruissellement

Les actions relevant du PPR

Le PPR permet de réduire la vulnérabilité à ce type de phénomène en imposant des mesures de maîtrise du ruissellement sur les secteurs amont des bassins versants, en prévoyant des emplacements inconstructibles capables de stocker les eaux pluviales ou préservant les lits majeurs, les axes d'écoulement. Le zonage PPR peut interdire l'urbanisation des axes des thalwegs secs soumis à un aléa de ruissellement important et des exutoires, prévoir des règles minimales pour la construction de certains équipements publics (terrains de sport, station d'épuration, etc.) dans les lits majeurs, imposer s'il y a lieu des dispositions constructives de prévention, envisager des protections ou aménagements localisés pour certaines constructions existantes fortement menacées.

Le PPR peut par ailleurs imposer des mesures sur les constructions existantes et à venir pour réduire leur vulnérabilité. La collectivité territoriale doit être étroitement associée à la connaissance du risque et aux moyens à mettre en œuvre pour s'en prémunir, d'autant qu'elle assurera, à travers son PLU, la plupart du temps la maîtrise, la gestion des dispositifs d'assainissement ou des secteurs de développement. Elle peut également participer financièrement à la collecte des informations historiques, techniques, à la mise en place des SIG et à la réalisation des levers topographiques, dans la mesure où ces éléments lui sont utiles pour le développement ou la gestion de son territoire.
Les paramètres caractéristiques du risque par ruissellement pluvial concernent essentiellement la petite surface des bassins versants, limitée à
quelques dizaines de km^{2}. Au fait que ce bassin versant présente:

- soit des zones à fortes pentes, avec des vitesses d'écoulement élevées. L'épisode pluvieux critique sera plutôt de type orageux, avec des intensités exceptionnelles;
- soit des zones à pentes plus faibles. L'épisode pluvieux critique sera plutôt de longue durée.
La démarche peut s'articuler autour de huit étapes:
- caractérisation du site et évaluation du risque hydrologique sur des critères topographiques et géomorphologiques;
- estimation des apports des différents bassins versants sous l'effet d'un événement pluvieux peu fréquent par une approche hydraulique simplifiée;
- estimation détaillée des effets des mesures préventives qui peuvent être adoptées;
- réalisation de la carte d'aléas;
- évaluation des enjeux;
- plan de zonage réglementaire;
- information sur les risques résiduels devant être assurés par la collectivité;
- réalisation d'un plan de secours.

Nota: nous nous intéressons dans ce document aux quatre premières étapes citées précédemment, sachant que les quatre dernières sont communes avec celles de la démarche sur les inondations par débordement de rivières [Guide méthodologique, Plans de prévention des risques naturels, risques d'inondation, 1999].

- La connaissance des aléas

La délimitation des secteurs soumis à un aléa concerne aussi bien les lieux susceptibles d'être touchés par une inondation (zone d'accumulation) que les zones d'écoulement et de production engendrant cette inondation.
On s'intéresse à des systèmes hydrologiques qui comportent un réseau de drainage plus ou moins artificialisé, au fonctionnement occasionnel, voire des ruisseaux de faible importance, ayant pu ou non, être recouverts à la traversée d'une agglomération. Ils constituent de ce fait des systèmes particulièrement dangereux. La rareté voire l'absence d'écoulement significatif présente un caractère rassurant et les dimensions réduites des voies d'écoulement naturel incitent à la réalisation d'ouvrages «économiquement» envisageables pour gagner de l'espace urbain.
Il convient également d'intégrer les aléas susceptibles d'être générés par les ouvrages hydrauliques de rétention, soit du fait du dépassement de leur capacité de régulation, soit du fait de leur dysfonctionnement.

La modélisation hydrologique et hydraulique est à l'heure actuelle l'outil le plus performant dans la détermination des apports hydrauliques. Cependant, la détermination de l'aléa ruissellement dans le cas d'un PPR, ne doit pas passer forcément par l'évaluation précise des apports et des niveaux d'eau correspondant. Suivant les cas (contexte géographique et niveau de précision nécessaire à la protection des personnes et des biens), des procédures allégées peuvent être adoptées. Ainsi par ordre croissant de précision, la détermination de l'aléa ruissellement peut être effectuée par:

- une simple identification naturaliste des zones à risque suivant des paramètres spécifiques (historique des épisodes antérieurs, repères de crue, pentes, coefficient de ruissellement, détermination des points sensibles au niveau de l'écoulement, etc.). Cette approche est généralement suffisante lorsque les enjeux exposés sont faibles;
- une démarche hydraulique simplifiée avec une détermination des apports par les méthodes de calcul pseudo-déterministes (méthode rationnelle)

et d'hydraulique simple (formule de ManingStrickler, formule d'orifice et de déversoir). Cette approche est adaptée pour appréhender les aléas au droit de points singuliers;
- la modélisation hydrologique et hydraulique.

L'organigramme de la page précédente situe chacun de ces volets et montre leur interdépendance.
Selon les cas, on peut programmer dès le départ la chaîne complète des études, depuis l'hydrogéomorphologie jusqu'à la modélisation hydraulique, ou procéder par étapes successives, afin d'optimiser les moyens mis en œuvre. Compte tenu de l'étendue des territoires soumis à l'aléa d'inondation, cette deuxième solution est préférable.

L'approche historique et hydrogéomorphologique

L'approche se fait à l'échelle du 1:25000 ou du 1:10000. C'est la première phase d'analyse des milieux naturels et anthropiques constituant les bassins versants et les fonds de vallées. Cette méthode est fondée sur une démarche naturaliste destinée à mettre en évidence les différentes unités du relief, à reconstituer leur évolution morphologique et à examiner leur mode de fonctionnement vis-à-vis des écoulements superficiels en tenant compte des spécificités topographiques, pédologiques, morphologiques et des modifications apportées par l'homme.
Dans les petits vallons ruraux ou urbanisés, l'approche «historique-hydrogéomorphologique» constitue un moyen pour déterminer les axes de drainage habituellement secs et leurs lits majeurs qui servent d'exutoire pour des épisodes pluvieux intenses et qui peuvent être affectés par des crues violentes et dommageables.

Cette approche pose en toute clarté la problématique de la planification spatiale, en particulier celle de l'extension de l'urbanisation, et fournit plus généralement, des éléments de référence utiles pour asseoir les choix qui seront effectués en matière de prévention.

Notons que la compréhension globale du milieu favorise une meilleure gestion de l'eau et contribue à retenir si besoin des solutions conformes à chaque situation : identification de sites naturels propices à la création de bassins de rétention sur les versants, délimitation des singularités (zone de stockage des eaux, anciens chenaux d'écoulement, etc.).
Si pour une première approche à l'échelle du 1:25000 (voire un agrandissement de la carte au $1: 10000)$ les cartes existantes sont bien adaptées, elles deviennent d'une précision insuffisante lorsqu'il s'agit de passer à une exploitation quantitative des données hydrologiques. Il est alors nécessaire de recourir à des levers complémentaires réalisés soit sur le terrain par profils sélectionnés soit par photo-restitution. Il est souhaitable pour optimiser cette phase d'étude d'identifier et de lever tous les points significatifs de la morphologie mis en évidence par la carte hydrogéomorphologique.
La photographie aérienne constitue un outil également très bien adapté à l'analyse hydrogéomorphologique. Elle peut être exploitée soit par photo-identification d'objets soit par photointerprétation. Si l'interprétation de la microtopographie constitue une base essentielle de la cartographie celle-ci peut atteindre un très bon niveau d'efficacité si l'on recourt simultanément aux observations relatives aux autres paramètres disponibles soit en consultant les archives soit en réalisant des enquêtes de terrain. Les archives sont susceptibles de fournir des informations précises sur les évènements observés dans le passé et sur les travaux, ouvrages et aménagements dont la connaissance permet de comprendre ou même de prévoir, l'évolution de l'ampleur des inondations.
Les observations de terrain sont indispensables pour vérifier les données résultant de la photointerprétation, pour lever les incertitudes dans les cas difficiles et pour étudier les éléments non apparents sur les photographies.

Compte-tenu de son faible coût cette approche «historique-hydrogéomorphologique» doit être envisagée sur tous les bassins versants susceptibles d'être concernés par des dommages importants liés au ruissellement. Suivant le résultat, elle sera le préalable à une étude plus détaillée faisant appel à une modélisation.

Ce niveau de définition peut, dans de nombreux cas, être suffisant pour qualifier l'aléa, entreprendre une cartographie et poursuivre la démarche vers le zonage réglementaire.

L'approche hydraulique simplifiée

La météorologie, ainsi que le contexte climatique précédant l'événement orageux, influent sur la capacité d'absorption du sol. Puis, comme il a été vu au paragraphe précèdent, la configuration naturelle du bassin versant (superficie, pente, forme géométrique, nature des sols, couvert végétal, urbanisation) intervient sur les volumes ruisselés, sur le temps de propagation des eaux, sur la concentration des écoulements dans le temps et l'espace.
Les débits générés par le ruissellement sont tels, que les capacités d'évacuation des thalwegs, des ouvrages d'assainissement et des ouvrages de franchissement sont souvent insuffisantes et la majeure partie des flots sera acheminée par les voiries et les espaces ouverts. Une approche qualitative des vitesses et des profondeurs d'eau en quelques points sensibles peut fournir une image réaliste de la situation en période de crise.
La démarche hydraulique simplifiée a pour objectifs de fournir une estimation quantitative des phénomènes et un premier calcul des solutions envisageables.
À partir d'une analyse sommaire du bassin versant et de la prise en compte statistique des intensités pluviales, il s'agit de déterminer le débit prévisible des crues caractéristiques correspondant à des périodes de retour de dix ans, cent ans et exceptionnelle.

L'analyse du réseau hydrographique, naturel ou artificiel, permet de prévoir les incompatibilités éventuelles entre les caractéristiques de ce réseau et celles des crues de référence. On détermine ainsi des zones inondables, avec leurs hauteurs d'eau et vitesses d'écoulement. La prise en compte de l'occupation des sols permet alors de déterminer la vulnérabilité des biens, et de proposer des mesures de protection adaptées.
L'étude hydraulique doit tirer parti des données obtenues par l'approche «historique-hydrogéomorphologique» précédente (délimitation des bassins versants, perméabilité des sols, etc.).
À l'issue, un examen plus détaillé des modalités d'écoulement de crues dans le bassin versant permettra de vérifier la cohérence du système hydrographique et urbain.

L'évaluation de probabilité d'occurrence de phénomènes aléatoires et rares requiert une longue série d'observation. Faute de pouvoir en disposer, il convient de s'interroger et d'interpréter les incertitudes :
Quelle est l'influence de la taille de l'échantillon utilisé pour l'estimation de la période de retour?
Quelle est l'erreur sur l'estimation de la lame d'eau moyenne interceptée par un bassin versant?
Quel est l'écart dans l'estimation de la probabilité d'occurrence d'un épisode selon les méthodes mises en æuvre (analyse statistique, analyse historique) ?

La pluie

Face aux problèmes de prévention des inondations par ruissellement se pose le problème du choix de l'événement pluvieux qui va engendrer le phénomène, et plus précisément l'intensité critique qui à l'échelle du bassin versant générera un écoulement potentiellement dangereux. En effet, l'analyse, au cas par cas, met en évidence la diversité des conditions météorologiques pouvant engendrer le ruissellement [tab. 1].

Les épisodes intenses

Il s'agit d'événements exceptionnels. Une quantité importante d'eau est précipitée sur un

Tab. 1 - Nombre de communes déclarées au moins 5 fois depuis 1982 en CATNAT « inondations et coulées de boues » et nombre d'évènements pluvieux conduisant à ces catastrophes naturelles pour les départements les plus concernés.

Département	Nombre d'évènements	Évènements "courts» (*)	Évènements «moyens»(**)	Évènements «longs»(**)	Nombre de communes déclarées au moins 5 fois
Aisne	72	$64(89 \%)$	$2(3 \%)$	$6(8 \%)$	101
Alpes-Maritimes	42	$38(90 \%)$	$2(5 \%)$	$2(5 \%)$	44
Ardennes	37	$29(78 \%)$	$2(6 \%)$	$6(16 \%)$	139
Aude	41	$37(90 \%)$	$4(10 \%)$	$0(0 \%)$	137
Drôme	29	$26(90 \%)$	$0(0 \%)$	$3(10 \%)$	51
Finistère	40	$33(83 \%)$	$5(12 \%)$	$2(5 \%)$	61
Gard	37	$33(89 \%)$	$1(3 \%)$	$3(8 \%)$	95
Hérault	45	$39(87 \%)$	$4(9 \%)$	$2(4 \%)$	77
Isère	40	$34(85 \%)$	$2(5 \%)$	$4(10 \%)$	86
Maine-et-Loire	46	$39(85 \%)$	$3(6 \%)$	$4(9 \%)$	103
Meurthe-et-Moselle	39	$29(74 \%)$	$6(16 \%)$	$4(10 \%)$	103
Moselle	44	$36(82 \%)$	$4(9 \%)$	$4(9 \%)$	162
Pas-de-Calais	51	$44(86 \%)$	$4(8 \%)$	$3(6 \%)$	111
Pyrénées-Orientales	21	$19(90 \%)$	$2(10 \%)$	$0(0 \%)$	232
Saône-et-Loire	36	$31(86 \%)$	$1(3 \%)$	$4(11 \%)$	67
Seine-Maritime	68	$56(82 \%)$	$8(12 \%)$	$4(6 \%)$	102
Seine-et-Marne	49	$37(86 \%)$	$1(2 \%)$	$5(12 \%)$	154
Var	29	$27(93 \%)$	$2(7 \%)$	$0(0 \%)$	9
Vaucluse	$39(90 \%)$	$2(5 \%)$	$2(5 \%)$	38	
Vienne	23	$18(78 \%)$	$2(9 \%)$	$3(13 \%)$	43
Essonne	$30(91 \%)$	$1(3 \%)$	$2(6 \%)$	61	
Seine-Saint-Denis	$24(86 \%)$	$1(3 \%)$	$3(11 \%)$	31	
Val-d'Oise	$30(84 \%)$	$3(8 \%)$	$3(8 \%)$	61	
	36	30			4

(*) moins de 3 jours - (**) de 4 à 7 jours - (***) plus de 7 jours.
temps très court. Ce type d'événements pluvieux se rencontre plutôt en période estivale. Il caractérise aussi les événements pluvieux méditerranéens.

Lorsque c'est l'événement exceptionnel qui engendre le ruissellement, la question de sa caractérisation se pose. Peu de ces événements pluvieux sont réellement mesurés. Ce sont souvent des événements pluvieux localisés et la probabilité qu'ils se produisent sur un bassin versant équipé d'une station météorologique est faible. Se pose alors le problème de l'extrapolation d'événements pluvieux observés et mesurés
sur une station à un autre bassin versant. Deux approches sont possibles :

- utilisation de l'événement pluvieux local le plus proche. On utilise l'épisode correspondant à la station météorologique la plus proche;
- régionalisation des données pluviométriques. Dans ce cas, on cherche un événement pluvieux s'étant produit sur une station météorologique se situant dans un contexte proche du bassin versant concerné : même contexte géographique (distance par rapport à la mer ou à une crête de montagne), même contexte climatique (même zone climatique), etc.

Les épisodes de moindre intensité

Le ruissellement se produit car le sol est déjà saturé ou lorsque les contextes pédologique et géologique ne sont pas favorables. Il s'agit de précipitations sur sol peu perméable ou bien d'événements pluvieux survenant en contexte hydrique non favorable (sol saturé par l'événement pluvieux antérieur ou remontée de nappe).
Dans ce dernier cas, pratiquement la totalité de la lame d'eau précipitée est convertie en ruissellement. Ce peut être le cas des pluies hivernales où les périodes de précipitations s'enchaînent.

Estimation des débits ruisselés

La prévision des débits sur un bassin versant non instrumenté reste une des problématiques de l'hydrologie moderne. En effet, si le calage de certaines formules ou de certains modèles à partir de chroniques de débit semble donner des résultats globalement satisfaisants quant à la détermination des débits futurs, l'extrapolation à des bassins versants non instrumentés reste difficile.

En outre, ces méthodes estiment le plus souvent un débit de pointe pour un quantile connu (en l'occurrence décennal). Les débits pour des quantiles supérieurs (50 ans, 100 ans , etc.) susceptibles d'intéresser un PPR ne sont pas aisément extrapolables hormis par l'emploi de coefficients multiplicateurs établis de façon empirique.
La formule rationnelle est la méthode la plus simple et elle offre la possibilité d'un calcul direct des débits de pointe engendrés par un évènement exceptionnel par la prise en compte de l'intensité de la pluie dans sa formulation

La formule rationnelle

C'est la méthode la plus ancienne, elle utilise un modèle simple de transformation de la pluie de projet (décrite par son intensité Ip), supposée

[^3]uniforme et constante dans le temps, en un débit instantané maximal lorsque l'ensemble du bas\sin contribue à ce débit, selon la relation :

Q = K.C.Ip.S

Avec:
Q : débit instantané maximal ($\mathrm{m}^{3} / \mathrm{s}$) ;
K : constante pour homogénéiser les unités ($K=1 / 3,6$);
C : coefficient de ruissellement «de pointe», dont on fixera la valeur à 0,9 pour les épisodes rares ${ }^{5}$;
Ip : intensité de la pluie de durée égale au temps de concentration (mm / h) ;
S : superficie du bassin versant $\left(\mathrm{km}^{2}\right)$.
Cette méthode suppose que le débit de pointe soit lié à une pluie maximale, de durée égale au temps de concentration du bassin versant, de même période de retour, sans tenir compte des interactions pluie-sol ${ }^{6}$. L'intensité de la pluie de période de retour $\mathrm{T}(\mathrm{an})$ est celle de la pluie de durée égale au temps de concentration et estimée à partir de la formule de Montana $\left(\mathrm{I}=\mathrm{a} . \mathrm{t}^{-\mathrm{b}}\right)$, [cf. Annexes .
Le coefficient C est considéré dans cette méthode comme essentiellement dépendant des caractéristiques géomorphologiques (géologie, pentes, etc.), végétales, etc., des bassins versants. Dans le cadre de la démarche PPR, il est volontairement fixé à la valeur de 0,9 (épisode de référence de forte intensité engendrant un ruissellement généralisé des sols).

La méthode peut être considérée comme assez fiable pour les petits bassins versants (de 0 à $20 \mathrm{~km}^{2}$).

Le coefficient de ruissellement est une variable. Son estimation n'est pas aisée. Cependant dans les phénomènes exceptionnels, il semble que le sol, quelle que soit sa nature, tend à ne plus infiltrer et à se comporter comme une structure imperméable.

Identification des aléas,

les paramètres utilisables
L'estimation des débits ruisselés nécessite une identification des zones concernées plus fine (échelle inférieure au 1:10000) que celle proposée dans l'approche «historique-hydrogéomorphologique».

À cette fin, une visite de terrain apparaît indispensable pour apprécier, et si nécessaire compléter, les informations apportées par l'analyse «histo-rique-hydrogéomorphologique». Par ailleurs, les éléments pouvant former des embâcles, les axes drainants peu marqués peuvent être identifiés. Un découpage plus fin des aires contributives peut aussi être effectué.

Certains paramètres de description du bassin versant peuvent aider à une meilleure compréhension des phénomènes:

- la distribution des pentes: les forts gradients de pentes peuvent être un facteur de formation du ruissellement. En outre, la présence de zone plate à l'aval des zones de formation du ruissellement peut amplifier les phénomènes d'inondation par stagnation des eaux. L'étude de la distribution des pentes peut donc permettre d'appréhender le phénomène à l'échelle du bassin versant et d'identifier les zones à risque tant du point de vue de la formation du ruissellement que du point de vue des zones inondables. Ces informations peuvent être tirées de l'approche «historique-hydrogéomorphologique». Un lever topographique complémentaire peut s'avérer nécessaire;
- l'estimation des temps de concentrations: il s'agit du temps que met la goutte d'eau la plus éloignée hydrauliquement de l'exutoire pour parvenir à celui-ci. On estime que le temps de concentration est la durée comprise entre la fin de la pluie nette et la fin du ruissellement. Il est donc spécifique à chaque bassin versant. Toutes choses égales par ailleurs, plus le temps de concentration est court, plus les débits de pointe sont importants. Le calcul des temps de concentration des sous-bassins versants peut aider à détecter les points sensibles où le risque d'inondation peut être probant. Le temps de concentration peut se déduire de l'estimation de la vitesse d'écoulement et de l'évaluation du plus long parcours hydraulique. Si le cheminement hydraulique s'évalue aisément par une lecture cartographique, l'estimation des vitesses d'écoulement reste plus complexe. La littérature propose des tables
qui identifient les vitesses sur terrain naturel en fonction de l'occupation du sol et de la pente. Pour les axes d'écoulement et les ouvrages d'assainissement la vitesse peut être déduite de la formule de Maning-Strickler [voir fig. 7]. Il peut être également estimé à l'aide de formules le plus souvent empiriques.

Estimation des hauteurs d'eau

Une fois le débit établi, la formule de ManingStrickler permet d'estimer les hauteurs, en régime d'écoulement permanent, sur une section d'un axe d'écoulement donné :

$$
\mathbf{Q}=\mathbf{K} \cdot \mathbf{S} \cdot \mathbf{R}^{2 / 3} \cdot \mathbf{I}^{1 / 2}
$$

Avec :
K : coefficient de Maning-Strickler ;
S : section mouillée de l'ouvrage d'écoulement (m^{2}) exprimée en fonction de la hauteur d'eau (h) ;
P : périmètre mouillé de l'ouvrage d'écoulement (m) exprimé en fonction de la hauteur d'eau (h);
$\mathrm{R}(\mathrm{S} / \mathrm{p})$: rayon hydraulique de l'ouvrage d'écoulement ;
I : pente longitudinale de l'ouvrage.
La figure 6 montre les résultats de ce type de calcul pour un coefficient $\mathrm{K}=35$, qui peut être adopté pour la voirie.

Fig. 6 - Évolution du débit capable d'une voirie de 10 m de largeur en fonction de sa pente et de la profondeur d'eau.

Les limites de la méthode

Cette démarche d'étude hydraulique simplifiée souffre de certaines limites qu'il est nécessaire de garder à l'esprit lors de son utilisation.
Les débits et les hauteurs d'eau calculées dépendent des paramètres estimés.
Cette méthode fournit un débit instantané et non un hydrogramme complet permettant d'estimer les volumes transités.
Les crues n'ayant jamais la même forme, il s'agit d'une évaluation moyenne où la précision n'est pas à rechercher comme dans le cas d'un flux hydraulique maîtrisé.

Nota : Pour les calculs correspondants à des épisodes pluvieux d'une période de retour inférieure à la centennale on se reportera utilement aux méthodes présentées dans «La ville et son assainissement - Principes, méthodes et outils pour une meilleure intégration dans le cycle de l'eau» - CERTU, Juin 2003, Références, $n^{\circ} 38$.

La modélisation hydraulique

Appuyée sur la connaissance des évènements historiques, sur l'analyse hydrogéomorphologique et sur l'analyse hydrologique, la modélisation hydraulique consiste à reproduire des écoulements connus pour simuler des inondations correspondant à des conditions choisies par le projeteur. L'hydraulicien obtient pour l'hydrogramme de la crue de référence une ligne d'eau à partir de laquelle il peut délimiter une zone inondée et estimer les principaux paramètres physiques (hauteur de submersion, vitesse de courant, temps de montée ou de ressuyage de la crue, etc.).
Cette démarche hydraulique suppose en premier lieu une bonne connaissance de la délimitation et des fonctionnalités du bassin versant. Il s'agira ensuite de définir des niveaux d'aléas, l'aléa étant défini comme «la probabilité d'occurrence d'un phénomène matériel».
Dans les cas courants, l'utilisation de modèles hydrauliques en régime permanent sera suffisante. L'usage de modèles hydrauliques en régime non permanent sera réservé au cas où les zones de stockage naturel ou artificiel des eaux sont significative au regard du volume de la crue
de référence. Aussi sophistiqués qu'ils soient les modèles mathématiques ne peuvent traduire que de façon schématique et simplifiée une réalité beaucoup plus complexe. Tous les modèles doivent être calés à partir d'observations ou de mesures. Les logiciels qui traitent des écoulements pluviaux mettent en œuvre plusieurs modèles qui représentent la séquence des phénomènes : pluie, ruissellement de surface, transfert dans les collecteurs, transformation dans les ouvrages spéciaux.

Le choix du modèle de pluie dépend surtout de la surface du bassin versant analysé. Si jusqu'à 10 ou $15 \mathrm{~km}^{2}$ les pluies de projets classiques conviennent, au-delà, la représentation spatiotemporelle de la précipitation par modélisation pose de grandes difficultés dues à la fiabilité de ce type d'outil.
Les modèles hydrologiques de transformation pluie-ruissellement posent des problèmes de calage. C'est également vrai pour les modèles hydrauliques de transfert des hydrogrammes. Ces derniers prennent généralement bien en compte les écoulements à surface libre et en charge, les contraintes aval et les débordements.
À titre d'exemple on peut acter les fonctionnalités les plus importantes qui sont prises en compte actuellement:

- la topographie et la typologie des rues à partir des SIG existants;

Les limites de la méthode

Non seulement la transcription cartographique est délicate car c'est une interpolation de la ligne d'eau calculée sur un fond de plan souvent peu précis, mais lors d'épisodes exceptionnels de nombreux phénomènes perturbent l'écoulement particulièrement en milieu urbain et les niveaux calculés peuvent être très différents des niveaux observés. Il faut donc dans de nombreux cas relativiser l'apport de la modélisation hydraulique quant à la précision sur les cotes d'inondation. On pourra parfois se limiter à des calculs hydrauliques sommaires.

- représenter les écoulements fluviaux et torrentiels;
- simuler les hydrogrammes d'entrées et de sortie du système;
- assurer la liaison réseaux enterrés, écoulements superficiels;
- représenter les diverses pertes de charges aux carrefours et intersections, etc.

Vers de nouveaux modèles d'écoulement

Les recherches en cours permettent de penser qu'il sera possible, dans un délai de 3 à 5 ans, de compléter les outils existants par des modèles d'écoulement de surface en site urbain qui permettront de mieux définir l'aléa. Il sera possible de reproduire les écoulements de surface en prenant en compte toute la complexité de la ville ainsi que les processus hydrauliques qui se produisent lors des écoulements dans le réseau des rues, des espaces découverts intégrant les singularités de toutes sortes.

En attendant de pouvoir utiliser de façon courante ces nouveaux «outils», nous employons les modèles actuels même très imparfaits. Pour ce type d'application les logiciels utilisés actuellement peuvent être valorisés par des cartographies thématiques: zones d'insuffisance; zones de débordement pour diverses probabilités d'occurrence; analyse des effets des aménagements sur le fonctionnement global du système.

Les limites des modèles

Ces modèles, même très complets, utilisés avec des informations issues de l'analyse hydrologique schématique ne fourniront que des informations très partielles sur le risque associé au ruissellement pluvial. Les logiciels n'ont pas été créés pour simuler des écoulements de surface en période de crise.

La carte d'aléa

Comme pour la cartographie du zonage pluvial, il faut tenir compte, à l'échelle du bassin versant, de trois types de zones: les zones de production et d'aggravation de l'aléa, les zones d'écoulement
et les zones d'accumulation. C'est une difficulté spécifique à ce type de risque. Il impose la définition de prescriptions rigoureuses en amont des zones d'accumulation ou d'écoulement lorsque ces dernières sont situées en agglomération.

Pour réaliser cette cartographie il faudra bien entendu tenir compte de l'ensemble des paramètres hydrologiques et hydrauliques issus des études préalables mais il faudra aussi, pour fixer les niveaux d'aléa, tenir compte de la traduction de l'intensité de ces paramètres physiques en terme de dommages aux biens et de la gravité pour les personnes. Il faudra par ailleurs intégrer les marges d'incertitudes, devant par ailleurs être explicitées dans le rapport de présentation.
Sur le plan du principe de cette cartographie, on retiendra les éléments suivants:

- lorsqu'une zone en aval du bassin versant sera classée en aléa moyen à très fort et que cette intensité est due essentiellement aux apports amont, cette zone amont sera classée en «zone de production et d'aggravation de l'aléa» -bien entendu la traduction réglementaire ne sera pas la même;
- que les collectivités ont pris en compte les événements d'occurrence décennale dans leur système d'assainissement, voire au-delà pour les zones les plus vulnérables (Norme NF EN 752-2);
- concernant les zones d'écoulement et d'accumulation, pour fixer les niveaux d'aléa, on pourra tenir compte des résultats de l'approche hydrau-

Fig. 7 - Évolution de la vitesse d'écoulement sur une voirie de 10 m de largeur en fonction de la pente et de la profondeur d'eau.

Uinite de diplacenent debout duan adulte ipontit itrine

Fig. 8 - Possibilités de déplacement des personnes en fonction de la hauteur d'eau et de la vitesse d'écoulement
lique simplifiée [fig.7] et des travaux réalisés par la direction départementale de l'Équipement du Vaucluse [fig.8].

On doit également tenir compte d'autres éléments spécifiques aux sites urbains, en particulier le risque d'embâcle dû à la mise en mouvement des véhicules en stationnement par flotaison. À titre d'exemple le tableau 2 ci-après fournit quelques valeurs limites pour des véhicules particuliers.

Tab. 2 - Valeurs limites pour un véhicule de 800 kg ayant une hauteur de caisse de 0,15 m

Pente**	0,1	0,6	1	2	4	5
Hauteur max*	28,3	25,3	23,5	20,3	15,6	13,7
Vitesse***	0,8	1,9	2,3	2,9	3,5	3,6
* en cm - ** en \% ie en cm/m - *** en m/s.						

* en cm - ** en \% i.e en cm/m - *** en m/s.

Tab. 3 - Valeurs limites pour des personnes à mobilité réduite ou pour les cyclistes

Pente**	0,1	0,4	1	2,5	3,5
Hauteur max*	0,28	0,15	0,10	0,06	0,05
Vitesse***	0,81	1,07	1,29	1,45	1,52
* en cm - ** en \% i.e en cm/m - *** en m/s.					

* en cm - ** en \% i.e en cm/m - *** en m/s.

Le danger des objets flottants

Les écoulements sont bien souvent accompagnés d'un volume important de corps solides, en particulier tout ce qui est susceptible de flotter, qui peuvent être entraînés par flottation ou saltation et contribuer fortement à perturber les conditions d'écoulement et à augmenter le pouvoir destructeur.

Embâcle formée par des véhicules sous la force des flots.

Les valeurs limites de hauteur et vitesse pour le déplacement des personnes à mobilités réduites peuvent également être nécessaire à considérer dans certains secteurs [tab. 3].

Aux paramètres habituellement utilisés pour les crues de cours d'eau, c'est-à-dire les hauteurs d'eau et la vitesse d'écoulement, on peut être amené à ajouter la vitesse de montée de l'eau, le temps de submersion et le transport solide. La

Dans la zone rurale ou périurbaine peu dense, on retiendra la grille de qualification des aléas du Guide méthodologique sur les risques d'inondation [tab. 4]. Pour la partie urbaine, on tiendra compte des spécificités développées précédemment [tab. 5].
En outre une attention particulière devra être portée aux effets aggravants dus à la présence de certains ouvrages de type de déversoir de sécurité.

La carte d'aléa [fig. 9] situe également les ouvrages de protection et les équipements qui peuvent avoir un impact sur les conditions d'écoulement.

Tab. 4 - Grille d'évaluation de l'aléa (crue centennale) sur les critères hauteur-vitesse applicables dans la zone rurale péri-urbaine

	Vitesse faible	Vitesse moyenne	Vitesse forte
Hauteur $<0,50 \mathrm{~m}$			
Hauteur comprise entre 0,50 et 1 m			
Hauteur $>1 \mathrm{~m}$			
Faible \quad Moyen		Fort	

Tab. 5 - Grille d'évaluation de l'aléa (crue centennale) sur les critères hauteur-vitesse applicables dans la zone urbaine

La carte d'aléa

La carte d'aléa est la représentation géographique du niveau d'intensité du phénomène d'inondation par ruissellement à partir de l'estimation des divers paramètres physiques qui le caractérisent : la hauteur d'eau, la vitesse d'écoulement, la vitesse de montée des eaux et le temps de submersion.
Ces paramètres doivent être agglomérés entre eux pour définir un niveau d'aléa qui peut être aggravé par la présence de bassins de retenue de barrages, de digues, de déversoirs d'orage, etc. ou la possibilité d'embâcle par le transport de véhicules, de mobiliers urbains ou d'apports d'origine rurales.
Ces facteurs aggravants seront cartographiés. Le niveau d'aléa pourra alors être localement surclassé d'un ou deux niveaux (moyen à très fort par exemple).

Les enjeux

L'évaluation des enjeux peut s'organiser autour de quatre axes:

- les zones directement exposées aux phénomènes d'inondation (écoulements principaux tels que définis par l'analyse hydrogéomorphologique);
- les zones indirectement exposées aux phénomènes d'inondation (écoulements secondaires et réorientation des écoulements principaux);
- les zones actuelles urbanisées;
- les zones de stockage à préserver ou à créer. Cette notion s'applique sur des espaces potentiellement disponibles pour la mise en œuvre de rétention des eaux pluviales.

Les catégories d'enjeux devraient permettre de distinguer :

- les enjeux humains (populations directement menacées);

Principe

Délimitation des espaces urbanisés (limites de la réglementation de l'urbanisation), des zones d'expansion de crues et de stockage potentiel (conditions d'écoulement des eaux).

- les enjeux économiques (avec des sous classes pour les établissements industriels, commerciaux et d'activité tertiaire, agricoles);
- les enjeux de services publics (école, hôpital, maison de repos, gendarmerie, etc.);
- les enjeux d'équipements publics et stratégiques fortement impactés (voiries, transports publics, réseaux publics divers).

Le zonage réglementaire ${ }^{7}$

La délimitation du zonage réglementaire est basée essentiellement sur les principes énoncés par la circulaire du 24 janvier 1994.
Dans le cas des inondations par ruissellement le service instructeur du PPR veillera à appliquer l'article 3-2 du décret $\mathrm{n}^{\circ} 95-1089$ du 5 octobre 1995 qui prévoit que des zones non directement exposées, mais dont l'aménagement pourrait accroître le risque, peuvent faire l'objet d'interdiction ou de prescription particulières - <zone de production et d'aggravation de l'aléa».
De même il est important d'évaluer la sécurité des ouvrages existants de protection (retenues pluviales en particulier) des lieux habités situés à l'aval. Le service instructeur du PPR sera amené à établir des prescriptions sans tenir compte de ces ouvrages. Toutefois, le dysfonctionnement ou le dépassement de capacité desdits ouvrages pouvant toujours se produire, il conviendra d'examiner la justesse des prescriptions envisagées et si nécessaire de les adapter.

Éléments pour un règlement du PPR ${ }^{8}$

L'objectif du règlement est d'éviter l'aggravation des risques et autant que possible de réduire la vulnérabilité des personnes et des biens exposés.

La réponse réglementaire est largement fonction de l'origine du ruissellement et de l'acuité du

[^4]problème posé qui devra avoir été étudié par la collectivité dans le cadre des «outils» dont elle dispose (zonage pluvial, PLU, etc.).

En l'absence du zonage d'assainissement pluvial, le PPR dans son règlement (au titre des mesures de prévention, de protection et de sauvegarde) devra imposer à la collectivité territoriale sa réalisation.

Le ruissellement peut être dû:

- à la précipitation sur la surface urbaine sans apport extérieur;
- en partie à un apport extérieur à la ville en zone péri-urbaine ou rurale avec diffusion par le réseau d'assainissement qui est alors insuffisant;
- à l'apport extérieur à la ville mais sans cours d'eau identifié.

Dans les trois cas, l'analyse réglementaire se fera à l'échelle du bassin versant en considérant trois types de zones: les secteurs de production et d'aggravation de l'aléa, les secteurs d'écoulement et les secteurs d'accumulation.

Le règlement précise ${ }^{9}$ les mesures applicables à chaque zone du document cartographique, en distinguant:

- la réglementation des projets nouveaux. Le niveau d'interdiction est différent en zones rouges, en zones bleues et en zones de production et d'aggravation de l'aléa;
- les mesures applicables à l'existant;
- les mesures générales de prévention, de protection et de sauvegarde.
Pour les projets nouveaux, il y sera indiqué ce qui est interdit et ce qui est prescrit. Pour l'existant, il y sera indiqué ce qui est recommandé et ce qui est prescrit.

Les secteurs de production et d'aggravation de l'aléa

Il peut s'agir de zones urbanisées ou agricoles qui peuvent produire des ruissellements importants. Elles sont le plus souvent situées en amont des zones où de forts enieux ont été recensés.

[^5]
La gestion des zones agricoles

Les types de cultures ainsi que les techniques culturales ont un impact certain sur l'aggravation du risque ${ }^{10}$. C'est particulièrement vrai dans le cas de la viticulture où le développement de la mécanisation a entraîné un remodelage de l'espace pour permettre une exploitation plus aisée avec des engins. Les haies, talus, friches, murs de soutènement ont été supprimés pour faciliter l'accès à des engins, parallèlement les surfaces plantées ont augmenté, entraînant la suppression des zones tampon. Le désherbage chimique, en supprimant la couverture végétale a aggravé ce phénomène. Non seulement la végétation freinait l'écoulement mais le système racinaire assurait la stabilité du sol nécessaire à la résistance à l'érosion.

Si ce phénomène est spectaculaire pour la culture de la vigne il est tout aussi présent avec la maïsiculture ou tout autre production extensive car pour assurer une meilleure rentabilité cette agriculture s'est développée sans prendre les mesures compensatoires appropriées.
Pour la vigne notamment le règlement devra prévoir dans ces zones:

- une limitation de la longueur des rangs de ceps surtout dans le sens de la pente;
- une compensation de l'extension de la surface du vignoble pour freiner les écoulements par des plantations ou la création d'obstacles;
- la création de zones tampons (fossés, retenues, haies, etc.) entre vignoble et l'urbanisation en utilisant au mieux la présence des voiries;
- l'enherbement du vignoble;
- la mise en place de bassins d'orage pour intercepter les particules arrachées par l'érosion et éviter l'obturation du réseau d'assainissement (fossés et canalisations).

[^6]Pour les autres cultures il faudra préconiser ou imposer suivant les cas:

- des enherbements ou embuissonnements dans les secteurs non cultivés;
- l'élimination dans les assolements des cultures qui laissent les sols nus durant les saisons critiques de l'année;
- l'obligation de laisser une couverture herbacée sous les cultures arborées notamment;
- d'une façon générale une réorganisation des surfaces agricoles.

La gestion des zones à urbaniser

Les constructions nouvelles seront interdites sauf si elles sont accompagnées de moyens d'infiltration et/ou de rétention des eaux de pluies. Ces dispositions seront intégrées dans les divers documents d'urbanisme et en particulier le permis de construire. Suivant la vulnérabilité à l'aval, les ouvrages devront être dimensionnés pour pouvoir contenir des volumes correspondant à des épisodes pluvieux, à des périodes de retour de trente à cent ans. Une partie de ces ouvrages, en particulier ceux liés au niveau de protection le plus important, seront des équipements réalisés par la collectivité ou qui lui ont été remis.

Comme pour le règlement des PLU, il pourra être utile d'imposer:

- des profils en travers types de voirie ou des orientations particulières de façon à ce qu'elles puissent assurer les fonctions de stockage et/ou d'évacuation;
- des reculs pour la mise en place de «noues»;
- l'utilisation des espaces verts comme lieux de rétention. Le lieu pourra également être imposé.

Les secteurs d'écoulement

Il s'agit en général des zones de pentes moyennes à fortes. Dans ces espaces, on retrouve les deux types d'occupation du sol étudiés précédemment: les espaces dédiés à l'agriculture et les zones à urbaniser.

Les espaces agricoles

Au-delà des prescriptions déjà établies, on pourra préconiser ou imposer suivant les cas: une amélioration de la couverture végétale, la création de bassins d'orages ou la création de zones tampons. Il s'agit donc d'éviter toute aggravation de l'aléa à l'aval qui pourrait résulter d'une évolution des pratiques culturales ou de l'occupation des sols. Ainsi, toute extension de zones agricoles tendant à transformer des prairies en terre labourée pourra être accompagnée de prescriptions voire interdite.

Les zones à urbaniser

Les constructions nouvelles

Le risque d'aggravation est motivé par la pente qui provoque des écoulements de type torrentiel au niveau des voiries ou dans de mini talwegs. Le principe essentiel est de proscrire toute nouvelle construction dans les fonds de thalwegs (un recul systématique de 10 à 20 m devra être instauré). Par ailleurs :

- les constructions dépourvues de fondations prévues pour résister à des affouillements, à des tassements et à des érosions localisées seront interdites;
- les coefficients d'emprise au sol seront limités à des valeurs de 0,20 à 0,30 ;
- les constructions seront établies de façon à ne pas faire barrage à l'écoulement;
- il en sera de même pour les clôtures qui seront ajourées avec des soubassements limités à $0,20 \mathrm{~m}$. Elles pourront être plus simplement interdites;
- les cotes de seuils habitables seront fixées à $+0,30 \mathrm{~m}$ par rapport au point le plus haut de la voirie;
- les sous-sols seront interdits dans toutes les zones d'écoulement préférentiel.

Le bâti existant

Les changements de destination sont interdits, sauf s'ils ne concourent pas à augmenter le nombre de personnes exposées au risque.

Par ailleurs, des prescriptions viseront à améliorer la transparence hydraulique des clôtures existantes, la suppression des obstacles à l'écoulement les plus évidents, la réduction de la vulnérabilité des biens (édification de batardeaux, renforcement des baies vitrées et autres vérandas, coupe circuit électrique hors d'eau, etc.).
Le PPR doit clairement expliciter les mesures rendues obligatoires ainsi que les délais ${ }^{11}$.

Les secteurs d'accumulation

On peut ici se reporter utilement aux dispositions applicables en zones rouge et bleue pour les inondations par débordement de rivière. Par contre il faudra porter une attention particulière aux petits bassins versants qui répondent très rapidement aux épisodes pluvieux et qui réduisent ou suppriment toute possibilité d'alerte ou d'évacuation des personnes exposées.

Constructions nouvelles, reconstruction et aménagement

On peut interdire:

- toute construction nouvelle. Voir cependant la possibilité d'autoriser certains projets liés à la gestion de l'existant (circulaire du 24 avril 1996) ;
- les terrains aménagés pour l'accueil de campeurs, caravanes et camping-car;
- la construction légère de loisir;
- tout remblai ;
- les décharges d'ordures ménagères ou de déchets industriels:
- les parkings non liés directement à l'usage des installations existantes.

Action sur le bâti déjà autorisé ou existant

Pour le bâti déjà autorisé, le PPR peut prescrire des conditions de fonctionnement en particulier des périodes d'ouverture. Rien n'interdit de refuser des extensions bien que leur fonctionnement soit autorisé sous conditions.

Concernant les travaux d'entretien, ils ne peuvent pas être interdits, mais il est possible de définir les mesures suivantes:

- les aménagements retenus ne devront pas changer la destination des bâtiments ni augmenter la vulnérabilité économique;
- obligation de traiter les parties métalliques des ossatures;
- éviter les liants à base de plâtre;
- éviter les revêtements de sol sensible à l'eau;
- choisir des matériaux hydrofuges pour l'isolation;
- accroître la capacité de ventilation des locaux;
- préparation à la mise en place de batardeaux sur les ouvertures (jusqu'à un mètre maximum de hauteur).
Concernant les activités industrielles et artisanales existantes on peut envisager les prescriptions ci-dessous:
- mise hors d'eau avec arrimage des produits susceptibles de polluer les eaux;
- mise en place d'un dispositif de coupure du réseau électrique placé au-dessus de la cote de référence $+0,50 \mathrm{~m}$ et qui permettra d'isoler la partie inondée;
- mise en place de dispositifs de coupure des autres réseaux techniques placés également audessus de la cote de référence $+0,50 \mathrm{~m}$ pour isoler la partie sinistrée;
- mise en œuvre d'un programme de réduction de la vulnérabilité qui comprendra deux phases;
- un diagnostic du risque avec des indicateurs de quantification du risque, une évaluation économique des dommages potentiels, l'évaluation économique des pertes d'exploitation;
- l'indication des moyens à mettre en place avec: les consignes de sécurité, la délimitation des zones de refuge pour les produits et le matériel, les mesures à mettre en œuvre pour limiter les dommages, les programmes prévisionnels des opérations à engager.

Le PPR devra clairement expliciter les mesures rendues obligatoires ainsi que les délais ${ }^{12}$.

Les zones soumises à un aléa moyen

On se situe en général dans un espace urbanisé où l'inondation peut perturber le fonctionnement social et l'activité économique. Il faut porter une attention particulière à ce qui n'est pas interdit :

- établissements recevant du public;
- activités industrielles avec des possibilités de fortes pertes d'exploitation;
- les réseaux divers, bâtiments et centres opérationnels concourant à l'organisation des secours et à la gestion de la crise.

Lorsque les prescriptions portent sur les conditions de construction, elles relèvent de l'article R.126-1 du Code de la construction et de l'habitation. Ces règles peuvent comprendre des études dont l'objet est de définir les conditions de réalisation d'utilisation ou d'exploitation des projets.

Pour les installations industrielles et artisanales on pourra reprendre une partie des prescriptions possibles dans les zones d'aléa fort.

Entretien des talus des berges et des ruisseaux

Les riverains ont une obligation d'entretenir les talus et berges des cours d'eau, d'évacuer les végétaux coupés, de réparer (dans un délai à définir) tout dommage causé par une crue.

La gestion des réseaux

Concernant les prescriptions vis-à-vis des gestionnaires de réseaux on peut prévoir les mesures suivantes:

- isoler et protéger les réseaux publics;
- implanter les centraux téléphoniques, les transformateurs électriques et tout autre matériel sensible à une cote supérieure aux plus hautes eaux avec une fondation sur socle permettant de résister à l'érosion du ruissellement ;
- installer les lignes électriques et téléphoniques sans emprise au sol;
- modifier les réseaux qui traversent les lits des rivières et qui peuvent être emportés;
- disposer des tampons de visite à verrouillage.

On peut interdire d'autre part:

- le mobilier urbain mobile;
- les barrières et autres mobiliers urbains pouvant piéger les embâcles;
- les publicités avec emprise au sol.

Actions sur la voirie

La voirie devrait être conçue structurellement de façon à résister aux crues les plus importantes, avec des protections contre l'érosion. Les routes peuvent dans certains cas être prévues pour jouer un rôle de digue.

Extraits d'un zonage d'assainissement

Ville de Rennes
Direction des Services techniques

Zonage assainissement

Limitation du coefficient d'imperméabilisation
Dimension des ouvrages de stockage
Octobre 2002

I- Zone de limitation
 de l'imperméabilisation et de maîtrise des débits pluviaux

Par rapport aux dispositions retenues dans le plan d'occupation des sols de 1998, la détermination et le nombre de coefficients d'imperméabilisation sur le territoire de la ville de Rennes demeurent inchangés.

Deux coefficients sont retenus:
Pour les motifs évoqués ci-avant et dans un souci de simplification et de gestion ultérieure des permis de construire, il est retenu deux coefficients d'imperméabilisation sur le territoire de la ville de Rennes:
1 - un de 90% dans le centre ville, dont le périmètre correspond au zonage centrale (UA) porté au POS;
2 - un de 40% sur le reste de la ville de Rennes. La prise en compte de ce chiffre résulte de plusieurs facteurs:

- tenir compte :
- des parcelles constructibles non imperméabilisées à ce jour ;
- d'un fonctionnement difficile du réseau de type unitaire et notamment dans le sud de Rennes. Un projet d'extension du réseau EP est par exemple envisagé sur le secteur de la rue de Kérangal;
- préserver l'avenir par rapport au problème de la qualité des eaux pluviales dont la législation risque d'évoluer dans les années à venir vers une maîtrise des flux de pollution déversés aussi bien en fréquence qu'en durée. Ce sont tous les déversoirs sur le réseau unitaire qui sont concernés;
- intégrer une marge de sécurité par rapport à l'imperméabilisation «sauvage» difficile à appréhender
en dehors du cadre des autorisations d'occupation du sol.

Commentaires :

Une modification est apportée par rapport aux prescriptions du plan d'occupation des sols de 1998. Il n'y a plus de dérogation pour les ZAC puisque celles-ci sont intégrées au plan local d'urbanisme. Le zonage assainissement à respecter devient donc homogène sur l'ensemble du territoire. Toutefois, une étude hydraulique particulière pourra être menée permettant de proposer une mutualisation des mesures compensatoires.
Les enjeux portent essentiellement sur les parcelles qui seront regroupées à l'occasion du remembrement foncier (cas par exemple des axes structurants), l'aménagement des zones d'activités, les secteurs commerciaux, les parkings, les espaces non imperméabilisés des grands équipements.

Zone à 90%

Dans cette zone, si 10% de la surface de la parcelle restent en espace non imperméabilisé, aucune mesure compensatoire n'est demandée.
Au-delà, la compensation s'exerce:

- parcelle non bâtie ou totalement libérée : la compensation est calculée sur la base d'une imperméabilisation au-delà du seuil de 90%;
- parcelle bâtie (extension des constructions existantes): la compensation est calculée sur la base de l'imperméabilisation existante avant travaux.
Ainsi, dans le cas d'une extension d'une construction existante dépassant les seuils définis ci-avant, seule
l'extension liée au projet est prise en compte dans le calcul sans rattrapage de la situation pré-existante. De la même façon, les règles ne seront pas appliquées dans le cas d'un projet améliorant la situation au regard de l'imperméabilisation antérieure, dans le cas de maintien ou de modification du bâti existant.

Zone à 40%

Dans cette zone, si 60% de la surface de la parcelle restent en espace non imperméabilisé, aucune mesure compensatoire n'est demandée.
Au-delà, la compensation s'exerce:

- parcelle non bâtie ou totalement libérée (après démolition) : la compensation est calculée sur la base d'une imperméabilisation au-delà du seuil de 40%;
- parcelle bâtie (extension des constructions existantes) : la compensation est calculée sur la base de l'imperméabilisation existante avant travaux.
Ainsi, dans le cas d'une extension d'une construction existante dépassant les seuils définis ci-avant, seule l'extension liée au projet est prise en compte dans le calcul sans rattrapage de la situation pré-existante. De la même façon, les règles ne seront pas appliquées dans le cas d'un projet améliorant la situation au regard de l'imperméabilisation antérieure, dans le cas de maintien ou de modification du bâti existant.

II - Dimensionnement
 des ouvrages de stockage

Choix des paramètres hydrologiques

Pluviométrie

Les services de la météorologie nationale exploite depuis 1949 un pluviographe très proche de Rennes (aérodrome de Rennes Saint-Jacques).
À partir des courbes intensité - durée fréquence (IDF) fournies par Météo-France (période de 1949 à 1990), nous avons déterminés les coefficients locaux (loi de Montana) pour une période de retour de dix ans.
$\mathrm{i}=\mathrm{at}^{\mathrm{b}}$ intensité de la précipitation en $\mathrm{mm} / \mathrm{min}$
$\mathrm{P}=\mathrm{at}^{(1+\mathrm{b})}$ hauteur précipitée en mm
Avec t en min

Paramètres retenus

	a	b
Durée de l'averse de 6 min à 2 h	6,355	$-0,674$
Durée de l'averse de 3 h à 48 h	9,626	$-0,784$

Coefficient d'apport

En l'absence d'étude précise sur la relation entre le coefficient d'apport et le coefficient d'imperméabilisation, sur la commune de Rennes, il est établi les relations suivantes:

- pour les parcelles inférieures à 1 ha:
projeté $\quad C_{a p}=C_{p}=\frac{S_{p}}{A}$
- pour les parcelles supérieures à 1 ha (formule de Schaake, Geyer et Knappa):
projeté $\quad C_{a p}=0,14+0,64 . C_{p}+0,5 \cdot I_{p}$
avec $C_{p}=\frac{S_{p}}{A}$
et I : pente moyenne en m / m de la conduite existante (pour les parcelles vierges la pente sera calculée sur le plus long parcours de l'eau)
I_{e} : pente existante
I_{p} : pente projetée
La commune prend en charge les imperméabilisations inférieures à:
$\mathrm{C}_{\mathrm{e}}=0,9$ en zone $1:$ centre
$\mathrm{C}_{\mathrm{e}}=0,4$ en zone $2:$ péri-centre
tel que défini au plan d'occupation des sols.
Pour cette raison, le coefficient d'apport existant peut être porté à 0,4 ou 0,9 suivant la situation de la parcelle.

Caractéristiques hydrauliques de l'ouvrage

Volume à stocker pour une période de retour de dix ans
Le calcul du volume est effectué à partir de la méthode dite des pluies.
La courbe des hauteurs d'eau entrantes est construite à partir de la loi de Montana définie au 1 de la présente annexe.
Les coefficients pris en compte sont ceux des durées d'averses courtes (surface à tamponner faible).
La courbe des hauteurs d'eau sortantes considère un débit de fuite constant proportionnel au coefficient d'apport existant avec pour base la hauteur de la précipitation en six minutes pour les créations et en une heure pour les extensions.

Créations :

$P_{(10,6)}=6,355.6^{(1-0,674)}$
$P_{10}=11,4 \mathrm{~mm}$
$I_{10}=\frac{P_{10}}{t} \quad I_{10}=\frac{11,4}{6}$
Pour un coeficient d'imperméabilisation égal à 0,4 , le débit de fuite est Qfe $=126 \mathrm{l} / \mathrm{s} / \mathrm{ha}$

Extensions :

$$
\begin{aligned}
& P_{(10,60)}=6,355.60(1-0,674) \\
& P_{10}=24,14 \mathrm{~mm} \\
& I_{10}=\frac{P_{10}}{t} \quad I_{10}=\frac{24,14}{60}
\end{aligned}
$$

Pour un coeficient d'imperméabilisation égal à 0,2 , le débit de fuite est $Q_{f e}=13,4 \mathrm{l} / \mathrm{s} / \mathrm{ha}$

La valeur de H maximum permet de calculer le volume de stockage.

$$
\begin{aligned}
\mathrm{V}_{\text {stocké }} & =\mathrm{V}_{\text {ruisselé }}-\mathrm{V}_{\text {évacuable }} \\
& =\mathrm{C}_{\mathrm{ap}} \cdot \mathrm{I}(\mathrm{~T}, \mathrm{t}) \cdot \mathrm{A} \cdot \mathrm{t}-\mathrm{Q}_{\mathrm{f}} \cdot \mathrm{t} \\
& =\mathrm{C}_{\mathrm{ap}} \cdot \mathrm{a} \cdot \mathrm{t}(1+\mathrm{b}) \cdot \mathrm{A}-\mathrm{C}_{\mathrm{ae} \cdot} \cdot \mathrm{I}_{10} \cdot \mathrm{~A} \cdot \mathrm{t} \\
& =\mathrm{A} \cdot \mathrm{t} \cdot\left(\mathrm{C}_{\mathrm{ap}} \cdot \mathrm{a} \cdot \mathrm{t} \cdot \mathrm{t}_{\mathrm{ae}}-\mathrm{I}_{10}\right)
\end{aligned}
$$

Le volume stocké maximum est obtenu pour la valeur de t qui permet d'annuler la dérivée.

$$
\begin{aligned}
& \frac{d V}{d t}=A \cdot C_{a p} \cdot a \cdot(1+b) \cdot t^{b}-C_{a e} \cdot I_{l o \cdot A} \\
& \frac{d V}{d t}=0 \rightarrow t=\left(\frac{C_{a e} \cdot I_{l 0}}{C_{a p} \cdot a \cdot(1+b)}\right)^{1 / b}
\end{aligned}
$$

En remplaçant t on a :

$$
\begin{aligned}
& V_{\text {stocke }}=A \cdot\left(\frac{C_{a e} \cdot I_{I 0}}{a \cdot(I+b) \cdot C_{a p}}\right)^{1 / b} \cdot\left(C_{a p} \cdot a \cdot\left(\frac{C_{a e} \cdot I_{10}}{a \cdot(I+b) \cdot C_{a p}}\right)-C_{a e \cdot} \cdot I_{10}\right) \\
&=\left(\frac{-b \cdot I_{10}}{(I+b)}\right) \cdot A \cdot C_{a e} \cdot\left(\frac{I_{10}}{a \cdot(1+b)} \cdot \frac{C_{a e}}{C_{a p}}\right)^{1 / b}
\end{aligned}
$$

Pour les opérations ne concernant que des extensions, nous adopterons les coefficients d'apports suivants :

$$
\mathrm{C}_{\mathrm{ae}}=0,2 \text { et } \mathrm{C}_{\mathrm{ap}}=1
$$

En remplaçant par les valeurs numériques et avec S en m^{2} pour V en m^{3}
$\mathrm{V} \pm \mathrm{S} / 50$
et pour les créations :
en remplaçant par les valeurs numériques et avec A en m^{2} pour V en m^{3}
Zonage centre :

$$
V=3,53 \cdot 10^{-3} \cdot A \cdot\left(\frac{0,82}{C_{a p}}\right)^{-1,48}
$$

Zonage péri-centre centre :

$$
V=1,57 \cdot 10^{-3} \cdot A \cdot\left(\frac{0,36}{C_{a p}}\right)^{-1,48}
$$

Calcul du débit de fuite

De la formule initiale, qui définie le volume stocké ($\mathrm{V}_{\text {stocké }}$) on tire :

$$
\mathrm{Q}_{\mathrm{f}}=\mathrm{C}_{\mathrm{ae} \cdot} \cdot \mathrm{I}_{\mathrm{l} 0} \cdot \mathrm{~A}
$$

Si on exprime Q_{f} en $\mathrm{m}^{3} /$ set la surface prise en compte (A ou S) en m^{2}, il vient :

- pour les extensions: $\mathrm{Q}_{\mathrm{f}}=1,34 \cdot 10^{-6} . \mathrm{S}$
- pour les créations :
- en zone centre, $\mathrm{Q}_{\mathrm{f}}=2,849 \cdot 10^{-5} . \mathrm{A}$,
- en zone péri-centre, $\mathrm{Q}_{\mathrm{f}}=1,266 \cdot 10^{-5} . \mathrm{A}$

Le calcul de l'orifice nécessaire à la régulation du débit de fuite s'obtient à partir de la formule :

$$
Q=m \cdot \Omega \cdot \sqrt{2 . g . h} \quad \text { avec } \Omega=\text { section de passage }
$$

$$
\text { pour un orifice circulaire } m=0,62 \text { et } \Omega=\frac{\Pi \cdot D^{2}}{4}
$$

Pour obtenir le débit moyen de vidange Q_{f}, la hauteur prise en compte sera la demi-hauteur de l'ouvrage.
Il vient :

$$
D=2 \cdot \sqrt{\frac{Q_{f}}{6,1 \cdot \sqrt{H}}}
$$

Compensation du dépassement de l'imperméabilisation autorisée Création d'un volume de stockage Méthode de calcul

La méthode proposée pour calculer le volume de stockage nécessaire pour compenser une surimperméabilisation s'applique indifféremment à la majorité des cas d'opérations d'urbanisme soumises au permis de construire.

Elle est conforme aux préconisations de l'instruction technique relative aux réseaux d'assainissement des agglomérations (circulaire ministérielle 77.284/int) et découle de la méthode des pluies.
Le calcul du débit de fuite est à rapprocher de la méthode rationnelle.

Seules les surfaces raccordées au réseau, unitaire ou pluvial, sont soumises à l'application de la présente compensation.

Les surfaces raccordées aux fonds inférieurs (parcelle, cours d'eau) sont soumises à l'application de la loi (Code civil, loi sur l'eau, etc.).

En conséquence, une parcelle raccordée au réseau d'assainissement de la ville de Rennes peut avoir à évacuer plus que le débit décennal autorisé par le présent règlement. Dans ce cas, le pétitionnaire ou

Définitions

A : aire des surfaces raccordées de la parcelle en m^{2}
S : superficie imperméabilisée en m^{2}
S_{e} : superficie imperméabilisée existante
S_{P} : superficie imperméabilisée projetée
C : Coefficient d'imperméabilisation
C_{e} : Coefficient d'imperméabilisation existant
C_{p} : Coefficient d'imperméabilisation projeté
H : hauteur du réservoir en m
Q_{f} : débit de fuite en $\mathrm{m}^{3} / \mathrm{s}$
C_{a} : coefficient d'apport
$C_{a e}$: existant ou imposé
$C_{a p}$: projeté
I : pente moyenne de la conduite principale en m / m
I_{e} : pente existante
I_{p} : pente projetée
V : volume de stockage en m^{3}
D : diamètre de l'orifice en m
l'aménageur (public ou privé) devra présenter une note de calcul qui prendra en compte les surfaces drainées des parcelles supérieures, avec un coefficient d'apport correspondant à l'écoulement naturel des eaux, ou au débit d'évacuation d'eaux pluviales défini et accepté dans un acte légal (à joindre à la note de calcul) entre les parties concernées.

Méthode pratique

a) Déterminer les surfaces :

- la surface de la parcelle, $\mathrm{A}=\ldots \mathrm{m}^{2}$
- la surface imperméabilisée existante, $\mathrm{S}_{\mathrm{e}}=\ldots \mathrm{m}^{2}$
- la surface imperméabilisée projetée, $S_{p}=\ldots \mathrm{m}^{2}$

Nota : les espaces verts réalisés sur sous-sols couverts seront considérés comme surface perméable si l'épaisseur de terre végétale est supérieure ou égale à $0,40 \mathrm{~m}$.

b) Calculer le coefficient d'imperméabilisation

$$
C_{e}=\frac{S_{e}}{A} \quad C_{p}=\frac{S_{p}}{A}
$$

c) Déterminer le zonage de la parcelle :

- zone 1 : centre
- zone 2 : péri-centre
d) Définir votre construction :
- Extension
- zone 1 : centre

Si $\mathrm{C}_{\mathrm{p}} \leq 0,9 \rightarrow$ pas de compensation
Si $C_{p}>0,9$ et $C_{e}<0,9 \rightarrow$ calculer $S=S_{p}-0,9 . A$
Si $C_{p}>0,9$ et $C_{e}>0,9 \rightarrow$ calculer $S=S_{p}-S_{e}$
Surface à tamponner $\mathrm{S}=\ldots \mathrm{m}^{2}$
Nota: Si $\mathrm{S}<100 \mathrm{~m}^{2} \rightarrow$ pas de compensation

- zone 2 : péri-centre

Dans le cas d'une extension :
Si $\mathrm{C}_{\mathrm{p}} \leq 0,4 \rightarrow$ pas de compensation
Si $C_{p}>0,4$ et $C_{e}<0,4 \rightarrow$ calculer $S=S_{p}-0,4 . A$
Si $C_{p}>0,4$ et $C_{e}>0,4 \rightarrow$ calculer $S=S_{p}-S_{e}$
Surface à tamponner $\mathrm{S}=\ldots \mathrm{m}^{2}$
Nota : Si S $<100 \mathrm{~m}^{2} \rightarrow$ pas de compensation

- Création

Cas d'une parcelle vierge ou suite à la démolition de l'existant.

Lorsqu'une parcelle est réaménagée après démolition complète le droit acquis en matière d'imperméabili-
sation est égal à celui du zonage correspondant à la parcelle.

- zone 1 : centre

Si $\mathrm{C}_{\mathrm{p}} \leq 0,9 \rightarrow$ pas de compensation
Si $\mathrm{C}_{\mathrm{p}}>0,9 \rightarrow$ calculer le coefficient d'apport

- zone 2 : péri-centre

Si $C_{p} \leq 0,4 \rightarrow$ pas de compensation
Si $\mathrm{C}_{\mathrm{p}}>0,4 \rightarrow$ calculer le coefficient d'apport

- Calcul du coefficient d'apport

A $<10000 \mathrm{~m}^{2}$ (1 ha)

$$
C_{a p}=\frac{S_{p}}{A}
$$

Pour $\mathrm{A}>10000 \mathrm{~m}^{2}(1 \mathrm{ha})$
Déterminer la pente projetée $\mathrm{I}_{\mathrm{p}}=($ cote amont - cote aval)/longueur

$$
C_{a p}=0,14+0,64 \cdot \frac{S_{p}}{A}+0,5 \cdot I_{p}
$$

e) Calculer le volume de stockage

- Extension

$$
\mathrm{V}=\mathrm{S} / 50
$$

- Création

Par la méthode directe

- zone 1 : centre

$$
V=3,53 \cdot 10^{-3} \cdot A \cdot\left(\frac{0,82}{C_{a p}}\right)^{-1,48}
$$

- zone 2 : péri-centre

$$
V=1,57 \cdot 10^{-3} \cdot A \cdot\left(\frac{0,36}{C_{a p}}\right)^{-1,48}
$$

Par la méthode graphique

- reporter C_{ap} sur l'axe horizontal ;
- tracer une verticale partant de ce point :
- repérer la courbe C_{ae} correspondant à votre cas,
- partir du point d'intersection (B) entre la droite et la courbe pour tracer une droit horizontale,
- lire la valeur du volume (v) de stockage donnée pour $10000 \mathrm{~m}^{2}$ (1 ha).

Calculer :

$$
V=\frac{v . A}{10000}
$$

Détermination du volume du bassin de retenue

Le volume ne sera pas exigé :

$$
\text { - création : si } \mathrm{V}<1 \mathrm{~m}^{3}
$$

- extension : si $\mathrm{V}<2 \mathrm{~m}^{3}$

f) Calculer le débit de fuite

- Extension

$$
Q_{f}=1,34 \cdot 10-6 . S
$$

- Création
- zone 1 : centre

$$
Q_{f}=2,849 \cdot 10^{-5} \cdot A
$$

- zone 2 : péri-centre

$$
Q_{f}=1,266.10^{-5} . A
$$

g) Déterminer la hauteur du réservoir de stockage \mathbf{H}

Après avoir retenu une solution technique pour la réalisation du volume de stockage, sa hauteur est déterminée. Il est préférable de placer un trop plein calé à la cote maximale de l'eau qui a pour fonction l'évacuation des eaux en cas d'événement de période de retour supérieure à 10 ans (ou si l'orifice de régulation se bouche). Un entretien régulier est à effectuer.
$H=$ cote maximale de l'eau - cote de l'orifice de régulation
h) Calculer le diamètre de l'orifice de régulation

$$
D=2 \cdot \sqrt{\frac{Q_{f}}{6,1 \cdot \sqrt{H}}}
$$

Ville de Rennes

Rapport de présentation du plan local d'urbanisme de la ville de Rennes

Extraits, mai 2002

1 - La maîtrise des eaux pluviales

Cadre juridique

La loi sur l'Eau du 3 janvier 1992 vient compléter la loi sur l'Eau de décembre 1964, notamment par des précisions sur les eaux pluviales. L'article 3 fixe les objectifs assignés aux collectivités et vise nommément la maîtrise des eaux de ruissellement. Si le traitement même partiel des eaux de pluie n'est pas imposé aux communes, l'article 8 précise qu'un décret fixera les conditions de réglementation de tout rejet et déversement (y compris ceux des déversoirs d'orage). L'article 35 impose aux communes de délimiter les zones d'imperméabilisation des sols, de maîtriser le débit et l'écoulement de leur ruissellement et de délimiter les zones où il convient de stocker et/ou de traiter ces eaux pour protéger le milieu aquatique et éviter de nuire à l'efficacité des dispositifs d'assainissement. Les articles 3,4 et 5 définissent les modalités et le contenu des schémas d'aménagement et de gestion des eaux (SAGE), ce qui englobe les obligations concernant la maîtrise des eaux pluviales.

Problématique

La maîtrise des eaux pluviales est une question d'actualité. En effet, les eaux pluviales constituent une contrainte incontournable en matière d'urbanisation sur deux points:

- assurer la protection des biens et des personnes contre les inondations unitaires par temps de pluie;
- limiter les pollutions par débordement des réseaux.

La récente loi sur l'Eau (article 35) a accru les obligations des communes en matière notamment de lutte contre l'imperméabilisation des sols et de protection du milieu aquatique.

La gestion des eaux pluviales représente l'un des enjeux majeurs de la politique environnementale de la ville de Rennes.

Situation actuelle et actions développées

La situation actuelle se caractérise par les données suivantes:

- une imperméabilisation soutenue dans quelques secteurs et, plus généralement, de faibles capacités d'infiltration des eaux pluviales dans le sol;
- une station d'épuration qui pourra assurer une partie du traitement des eaux pluviales (les eaux du réseau unitaire sont dirigées vers l'unité de traitement);
- de nombreux déversoirs d'orage, dont certains en centre-ville, fonctionnant pour de faibles précipitations;
- des pollutions par hydrocarbures provenant essentiellement des zones industrielles.

Afin de remédier à cette situation, plusieurs actions ont déjà été entreprises :

- une étude conduite par les services de la ville sur la définition des coefficients d'imperméabilisation et la mise en œuvre de techniques alternatives;
- une gestion automatisée des déversoirs en cours de réalisation pour le centre-ville;
- la création de bassins-tampons sur le réseau unitaire et pluvial;
- un bassin de retenue en projet sur le nouveau quartier de Beauregard, venant compléter ceux des LongsChamps, de la Poterie, de Cleunay et du Colombier en souterrain.

Enjeu et objectifs associés

La gestion des eaux pluviales constitue un enjeu important de la politique d'environnement. La réalisation d'un schéma de zonage prenant en compte la problématique des eaux pluviales doit préciser les points suivants:

- la définition de zones où des mesures doivent être prises pour limiter l'imperméabilisation des sols et assurer la maîtrise du débit et de l'écoulement des eaux pluviales et de ruissellement;
- la nécessité de prévoir des installations pour assurer la collecte, le stockage éventuel et le traitement des eaux pluviales lorsque la pollution qu'elles apportent au milieu aquatique risque de nuire gravement à l'efficacité des dispositifs d'assainissement.

L'ensemble de ces actions pourra constituer à terme les éléments du schéma directeur d'aménagement des bassins pluviaux de la ville de Rennes. En termes d'incidences, des mesures spécifiques sont développées dans le POS.

2 - Le risque d'inondations à Rennes

Le contexte hydrologique rennais

L'agglomération rennaise a subi différentes crues dans son histoire récente. Ces événements sont inéluctables compte tenu de la situation de la ville à la confluence de deux cours d'eaux principaux: l'Ille et la Vilaine. Le réseau hydrographique présente un temps de réponse du bassin versant relativement long, conséquence de la configuration topographique locale et des pratiques de culture.

Différents facteurs ont permis de limiter ou d'améliorer la maîtrise des risques liés aux inondations : ils tiennent aux caractéristiques environnementales (pluviométrie relativement régulière, conditions d'écoulement de l'eau non torrentielles, etc.), mais aussi à une planification volontariste du développement urbain de l'agglomération; celui-ci a en effet su préserver, à travers les schémas directeurs successifs, des espaces naturels intra et extra-rocade.

Trois facteurs principaux :

- le rôle de ces espaces naturels dans le stockage des crues;
- le recours à des techniques alternatives pour l'assainissement pluvial en vue de limiter l'imperméabilisation des sols engendrée par le développement urbain (ces techniques ont déjà été appliquées notamment dans le cadres des opérations d'aménagement urbain initiées par la ville de Rennes);
- la mise en œuvre d'un programme de protection contre les crues.

Ils constituent des atouts qui permettent d'envisager une utilisation optimale de l'ensemble des espaces urbains sans aggravation de l'impact des crues sur le territoire de la commune, ni en amont, ni en aval de Rennes.

Les crues de référence

Pour la Vilaine, la crue de novembre 1974 correspond au plus important débit recensé ($250 \mathrm{~m}^{3} / \mathrm{s}$). L'impact de celle-ci a toutefois été moindre que celui de la crue de 1966, qui correspondait pourtant à un débit plus faible ($210 \mathrm{~m}^{3} / \mathrm{s}$) ; ceci peut s'expliquer par la réalisation des premiers travaux de protection et d'amélioration de l'écoulement des eaux.

Compte tenu des éléments suivants:

- la modification des conditions d'écoulement entre 1966 et 1974 (comblement du lit des quasis entre Sergent-Maginot et Aristide-Briand) ;
- le débit de la crue de 1974 correspond au débit connu le plus important;
- la mise œuvre du programme de protection contre les crues conçu en fonction de la cote d'eau atteinte en 1974 ;
- la crue de novembre 1974 peut être retenue comme crue de référence. La prise en compte des ouvrages réalisés à 20 cm au-dessus de la cote de 1974 dans le cadre de la lutte contre les crues amène à retenir comme cote de référence celle de 1974 avec une marge de sécurité de 20 cm (cote de référence Vilaine $=$ CRV $=1974+20 \mathrm{~cm})$.

Pour l'Ille, la plus grande crue connue est celle de mai 1981 ; son impact a été aggravé par un incident technique ayant conduit à un blocage des portes de l'écluse Saint-Martin en travers de l'écoulement. Cette valeur de référence a donc été contestée en 1986
par le tribunal administratif de Rennes qui a annulé la délibération du 8 octobre 1984 par laquelle le conseil municipal de Rennes a approuvé la révision du plan d'occupation des sols (...) en tant que ledit plan a classé en zones inondables les parties du territoire de la ville inondées les 12 et 13 mai 1981 par les eaux du canal d'Ille-et-Rance entre le moulin du Trublet et l'écluse du canal Saint-Martin. La récente inondation de janvier 1995 correspond à la crue d'origine entièrement naturelle (sans incident technique) la mieux connue dans les conditions actuelles d'écoulement (des observations et relevés précis permettent d'en connaître l'ampleur). Une marge de sécurité est également appliquée pour l'Ille par analogie avec la Vilaine.

Ceci amène à retenir comme cote de référence celle de 1995 avec une marge de sécurité de 20 cm (cote de référence Ille $=\mathrm{CRI}=1995+20 \mathrm{~cm}$).

Le programme de protection contre les crues

À la suite des inondations de 1966, des travaux furent entrepris afin de dégager le lit de la Vilaine des dépôts de toutes sortes. En outre, le système de retenue d'eau fut modifié au Cabinet-Vert par la mise en place d'un vannage mobile pouvant s'effacer complètement en fond de rivière. Les effets bénéfiques de ces travaux furent mis en évidence par un abaissement des plus hautes eaux lors de la crue de 1974 dont le débit était pourtant supérieur à celui de la crue de 1966.

Puis, un vaste programme de protection contre les crues fut engagé avec l'objectif de protéger les abords de la Vilaine en fonction de la cote atteinte par la crue de 1974 avec une marge de sécurité de 20 cm . Cet objectif se traduit par le rehaussement des berges (réalisation de digues en terre étanche, de rideaux de palplanches métalliques avec couronnement en béton et garde-corps, ou encore d'un mur de pierre ou de béton armé), complété par la mise en place de collecteurs d'eaux pluviales et de stations de pompage (destinés à recueillir les eaux des précipitations au moment des crues et à relever ces eaux pour les rejeter dans la Vilaine à une cote supérieure à celle des plus hautes eaux).

L'impact de ces interventions sur la ligne d'eau et sur la vitesse de propagation de la crue est négligeable compte-tenu de la réalisation d'autres ouvrages (exemple: réfection du pont Pasteur) qui est venue compenser une éventuelle aggravation de ces
phénomènes. L'ensemble du programme fait l'objet d'une déclaration d'utilité publique, et est réalisé par phases successives.

Ce programme doit se réaliser chaque fois que cela est possible dans les opérations d'aménagement par ouvrages de protection, dispositions prises dans la construction, ou dispositifs à étudier en fonction de la localisation du site et de son aménagement.

En revanche, les sites identifiés comme champ d'expansion des crues ne doivent pas faire l'objet de ce type d'aménagement.

Enjeu principal

Il s'agit de définir un périmètre fiable des zones inondables, approuvé par les services de l'État, qui préserve les biens et les personnes et qui prenne en compte les aménagements déjà réalisés dans le passé. Sa définition est transitoire dans l'attente de la mise en œuvre éventuelle par l'État d'un plan de prévention des risques naturels prévisibles.

3 - Les mesures spécifiques

Le zonage d'assainissement

Rappel du cadre législatif en matière de traitement des eaux usées.

En complément des éléments décrits dans l'état initial de l'environnement, nous rappellerons que la loi sur l'Eau du 3 janvier 1992 précise les obligations des collectivités en matière d'eaux urbaines usées. Ainsi, il leur revient de définir les zones d'assainissement collectif et non collectif en tenant compte des caractéristiques des zones (sensibilité du milieu, pouvoir épurateur du sol, etc.) et des coûts respectifs de chacune des solutions envisageables.
Le zonage assainissement, après définition, fait l'objet d'un procédure d'enquête publique.

L'imperméabilisation des sols

Rappel du cadre législatif pour la maîtrise des eaux pluviales

L'article de la loi sur l'Eau, qui crée un nouvel article du Code des collectivités territoriales (article L.222410) stipule que les communes doivent délimiter les zones où des mesures doivent être prises pour limiter l'imperméabilisation des sols et pour assurer la
maîtrise du débit et de l'écoulement des eaux pluviales et de ruissellement. Ces dispositions s'inscrivent dans le zonage assainissement évoqué ci-dessus.

La démarche conduite

Une réflexion spécifique, conduite par les services de la ville sur la problématique d'une meilleure maîtrise des débits d'eaux pluviales, d'écoulement et de ruissellement, répond aux objectifs suivants:

- maîtriser l'impact des rejets de temps de pluie sur le milieu récepteur, et donc participer à la reconquête de la qualité des eaux;
- éviter les désordres pour les biens et les personnes en réduisant les écoulements directs, vis-à-vis des risques d'inondation;
- optimiser la structure et le fonctionnement du réseau public en favorisant une réduction des nuisances liées aux chantiers et à une meilleure maîtrise des investissements de la collectivité pour l'adaptation du réseau aux besoins des usagers.

La démarche consiste à amener les aménageurs à développer des techniques alternatives en cas d'imperméabilisation des sols, afin de limiter le débit des eaux pluviales rejetées dans le réseau. Il s'agit donc de limiter le coefficient d'imperméabilisation des sols. Cette nouvelle approche se concrétise, en terme de solutions techniques, par des dispositifs très simples et peu onéreux. Elle nécessite une sensibilisation des usagers afin d'appréhender les enjeux, notamment celui du développement durable.

Les dispositions mises en œuvre

Les mesures développées en matière d'imperméabilisation des sols dans le zonage assainissement s'appuient sur la définition des grands secteurs relevant de coefficients d'imperméabilisation distincts. Il s'agit essentiellement du centre urbain et de ses extensions récentes qui présentent globalement aujourd'hui un coefficient d'imperméabilisation important, et des quartiers péri-centraux et périphériques pour lesquels un coefficient d'imperméabilisation moyen a été défini à partir des observations de terrain et des simulations réalisées. Ce coefficient constitue le seuil à partir duquel les aménageurs ou constructeurs devront mettre en œuvre des solutions compensatoires (volumes de stockage) sur la parcelle du projet.
Il en résulte la mise en œuvre de deux coefficients d'imperméabilisation sur le territoire de la ville de

Rennes qui sont 90% pour le centre urbain, 40% pour le reste de la ville.

Les mesures réglementaires du P.O.S.

La prise en compte des coefficients d'imperméabilisation des sols. Le coefficient dit de 90% correspond au zonage UA, à celui de la zone UG1 et aux secteurs de plan de masse du Colombier et de Bourg-l'Évesque. Le coefficient 40% est appliqué sur l'ensemble des autres zones urbaines et naturelles. Il convient de rappeler que les dispositions du POS ne s'appliquent pas dans les secteurs de ZAC. Cellesci relèvent d'une étude hydraulique particulière à réaliser au cas par cas dans le cadre du montage de l'opération en lien avec les objectifs de l'opération et les solutions techniques les plus appropriées. Son caractère d'opération d'ensemble peut en effet permettre de développer des solutions techniques collectives telles que par exemple les bassins-tampons ou chaussées-réservoirs.

La traduction des dispositions dans le règlement. L'article 4 du règlement (desserte par les réseaux) indique le coefficient d'imperméabilisation maximal applicable en fonction de la situation du terrain. Les modalités de calcul ainsi que des exemples d'ouvrages d'évacuation ou de stockage des eaux pluviales,sont développés par ailleurs dans le zonage assainissement, lequel est inséré dans les annexes du POS.

L'application des prescriptions. Il convient de préciser que la mise en œuvre des prescriptions est imposée aux projets de constructions neuves nécessitant un volume de stockage utile supérieur à $1 \mathrm{~m}^{3}$ en cas de dépassement du seuil autorisé. Pour les extensions des constructions existantes, l'application est sollicitée pour un dépassement du seuil impliquant un volume de stockage utile supérieur à $2 \mathrm{~m}^{3}$, ceci afin de ne pas perturber l'environnement existant de la parcelle et d'assurer la maîtrise du contrôle de la mise en œuvre des solutions techniques.

Ainsi, toute demande de permis de construire devra être analysée au regard des critères définis dans le dossiers «zonage assainissement», à savoir:

- une évaluation du niveau d'imperméabilisation de l'unité foncière concernée par le projet;
- les mesures mises en œuvre si le coefficient d'imperméabilisation est dépassé.

Affichage de consignes de sécurité

Minidete de Timetriear, de La skcurit intiriese es des libenter locaies Minishen de l'kcologie et du divtloppement durable

ARRETE

RELATIF A LAAFICHAGE DES CONSIGNES DE SECUETIE DEVANT ETRE PORTEES ala CONNATSSANCE DU PUBLIC
 de diviloppenert dumble,

Arritent:

Artale 17
 consiges de shovite devent tue pontes a li comainsaice du poblic.

Article 2

 majuch

Arricle 3

 de staritit devant the poriten ila conasimance do puhlic eit atropi.

Arbile 4

Platheme 27 MAI 2003

wi coelges

$$
\begin{aligned}
& 40 \text { never dityphonsta } \\
& \text { ans pelveru if/ar wois }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Le nisinsede Fimplinar, } \\
& \text { de la idewell iestricur } \\
& \text { at defiforner locales } \\
& \text { Nourlevasome sf jar datigutan. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { crancinnave }
\end{aligned}
$$

Extraits d'un règlement de PPR

1 - Portée du PPR

[...]

2 - Réglementation des projets nouveaux

Dispositions applicables en zone rouge

2.1 - Dispositions applicables aux zones d'écoulement

a. Voiries
i. Toutes dispositions seront prises par les maîtres d'ouvrage pour canaliser les écoulements superficiels sur les voiries. En cas d'impossibilité technique avérée, des mesures de compensation seront mises en œuvre.
ii. Une information par panneaux fixes sera réalisée par le gestionnaire de la voirie pour prévenir du caractère inondable des voies.
iii. [...]
b. Stockages
i. Tout stockage de matières de toutes natures est interdit à l'exception des citernes enterrées.
ii. [...]
c. Constructions
i. Sont interdits :

- les constructions nouvelles;
- les terrains aménagés pour l'accueil de campeurs, caravanes et campingcar ;
- les constructions légères de loisirs;
- toute construction après destruction totale d'un bâtiment ;
- toute reconstruction après destruction partielle d'un bâtiment causée directement ou indirectement par une crue;
- tout remblai ;
- les décharges d'ordures ménagères ou de déchets industriels;
- les parkings non liés directement à l'usage des installations existantes.
ii. [...]
d. [...]

2.2 - Dispositions applicables aux zones d'accumulation

a. Voiries
i. La construction de voiries en dessous de la cote du terrain naturel est interdite.
ii. [...]
b. [...]

Dispositions applicables en zone bleue

2.3-Dispositions applicables aux zones d'écoulement

a. Voiries
i. La construction de voies d'accès, publiques ou privées, est interdite sauf si les sections submersibles sont conçues pour résister à la crue de référence, qu'elles soient protégées contre l'érosion occasionnée par le ruissellement, ou qu'elles soient conçues de manière à pouvoir jouer un rôle de digue pour participer au ralentissement dynamique.
ii. [...]
b. [...]

2.4 - Dispositions applicables aux zones d'accumulation

a. Constructions

i. La cote du premier plancher habitable sera supérieure de 20 cm à ligne d'eau de la crue de référence.
ii. La construction se fera sur vide sanitaire.
iii. Les sous-sols sont interdits.
iv. [...]

Dispositions applicables en zone de production ou d'aggravation de l'aléa

2.5 - Constructions

a. Toute construction nouvelle, parking et voirie doivent être dotés de moyens de collecte, de rétention ou d'infiltration des eaux pluies afin de limiter le ruissellement. Ces moyens devront être dimensionnés pour pouvoir contenir les volumes de la pluie de référence sur le bassin versant considéré.
b. Les prescriptions suivantes seront respectées :
i. Tous les travaux soumis à permis de construire ou déclaration de travaux devront avoir un coefficient d'emprise au sol (CES) inférieur ou égal à 0,2 .
ii. Les constructions seront fondées dans le sol de façon à résister à des affouillements, à des tassements ou à des érosions localisées.
iii. Le stockage, s'il y a lieu, de produits polluants et flottants sera réalisé à l'intérieur des bâtiments.
iv. [...]
c. Sont interdits les terrains aménagés pour l'accueil de campeurs, caravanes et camping-car.
d. [...]

2.6 - Voiries

a. Les voiries nouvelles, privées ou publiques, doivent être accompagnées de moyens de réduction de l'impact de l'imperméabilisation. Il devra être réalisé soit des voiries à structure réservoir, soit des fossés drainants ou des fossés d'infiltration, soit des bassins de rétention calculés pour contenir les volumes de la pluie de référence sur le bassin considéré. L'entretien de ces dispositifs devra être assuré par le maître d'ouvrage.
b. [...]

3-Réglementation des projets existants

Dispositions applicables en zone rouge

3.1 - Dispositions applicables aux zones d'écoulement

a. Voiries
i. À l'occasion de travaux d'entretien ou de réfection des chaussées et des réseaux divers, des dispositions techniques seront prises pour protéger les voies, les réseaux enterrés existants, en particulier la distribution d'énergie et les télécommunications, contre l'érosion occasionnée par le ruissellement.
ii. [...]
b. Constructions, reconstructions et aménagements
i. Tous les travaux d'agrandissement du bâti existant sont interdits.
ii. Dans tous les bâtiments, les propriétaires devront mettre hors d'eau le poste de coupure électrique dans un délai de deux ans.
iii. L'aménagement, dans un délai de cinq ans, dans les bâtiments à usage d'habitation, d'accès à des niveaux de sécurité est rendu obligatoire.
iv. [...]
c. Stockage
i. Dans un délai de deux ans, le stockage des produits polluants et flottants sera ancré ou surélevé afin d'éviter tout risque d'entraînement en cas de crue.
ii. [...]

d. Réseaux et espaces publics

i. Les gestionnaires des réseaux ont l'obligation dans un délai de 5 ans, de se mettre en conformité avec les dispositions suivantes:

- modifier les réseaux qui traversent le lit du cours d'eau de manière à ce qu'ils ne soit pas emportés et ne constituent pas une gène à un bon écoulement pour la crue de référence;
- installer les lignes électriques et téléphoniques sous gaines enterrées;
- implanter sur socle résistant à un écoulement torrentiel puissant les transformateurs électriques ou tout autre matériel sensible. Les chambres de téléphone devront être lestées ou en position aérienne.
ii. [...]
e. [...]

3.2 - Dispositions applicables aux zones d'accumulation

a. Réseaux et espaces publics
i. Les gestionnaires des réseaux ont l'obligation dans un délai de cinq ans, de se mettre en conformité avec les dispositions suivantes :

- isoler et protéger les réseaux des effets de l'immersion;
- équiper d'une mise hors service automatique les réseaux de gaz, d'électricité et de téléphone;
ii. Les collectivités territoriales doivent réduire à son strict minimum le mobilier urbain fixe.
iii. [...]
b. [...]

Dispositions applicables en zone de production ou d'aggravation de l'aléa

3.3-Constructions

a. Tous travaux d'extension ou de réaménagement d'un bâtiment, d'un parking ou d'une voirie seront accompagnés de moyens de réduction de l'impact de l'imperméabilisation nouvellement créé ou aménagée. Il sera mis en place des moyens de collecte, de rétention ou d'infiltration des eaux de pluies afin de limiter le ruissellement. Ces moyens devront être dimensionnés pour pouvoir contenir les volumes de la pluie de référence sur le bassin versant considéré.
b. Les prescriptions suivantes seront respectées :
i. Le stockage, s'il y a lieu, de produits polluants et flottants sera réalisé à l'intérieur des bâtiments.
ii. [...]
c. Sont interdites les extensions de terrains aménagés pour l'accueil de campeurs, caravanes et camping car.
d. [...]

3.4 - Voiries

a. Les travaux de renforcement de voiries publiques ou privées doivent être accompagnés de moyens de réduction de l'impact de l'imperméabilisation. Il devra être réalisé soit des structures réservoirs, soit des fossés drainants ou des fossés d'infiltration, soit des bassins de rétention calculés pour contenir les volumes de la pluie de référence sur le bassin considéré. L'entretien de ces dispositifs devra être assuré par le maître d'ouvrage.

Dispositions applicables en zone bleue

3.5 - Constructions

a. Les extensions de bâtiments existants, en une ou plusieurs tranches de travaux, supérieures à $30 \mathrm{~m}^{2}$ de SHON au total sont interdites.
b. Les changements de destination des biens et constructions existants, occasionnant une augmentation de la vulnérabilité économique et accroissant le nombre de personnes exposées, sont interdits.

3.6. Voiries

a. [...]

4 - Mesures de prévention, de protection et de sauvegarde

Elles s'appliquent indépendamment ou non du découpage du PPR (zone rouge, zone bleue).

4.1 - Constructions

a. Sauvegarde des personnes
i. Les accès à des niveaux de sécurité dans tous les bâtiments doivent être laissés constamment libres.
ii. Pour les bâtiments d'activité, le propriétaire devra réaliser, ou faire réaliser, dans un délai de six mois, un plan d'évacuation ou de protection du personnel et des visiteurs.
iii. [...]

b. Travaux d'entretien

i. Les prescriptions suivantes seront à respecter :

- traiter les parties métalliques des ossatures de construction;
- éviter les liants à base de plâtre;
- éviter les revêtements des sols ou des murs sensibles à l'humidité ;
- utiliser des matériaux hydrofuges pour l'isolation.
ii. [...]

4.2 - Cours d'eau, talus et berges

a. Entretien

Les propriétaires riverains ont l'obligation, pour maintenir les conditions d'écoulement :

- d'entretenir régulièrement le lit mineur du cours d'eau (au minimum une fois par an);
- d'entretenir les talus et les berges;
- d'évacuer hors de la zone les végétaux coupés lors des entretiens des talus;
- d'entretenir toute atteinte par le ruisseau sur les berges. Une vérification et une réparation de la berge devront être effectuées dans un délai de un mois après la crue.
b. Sont interdits :
- tout rejet de matière solide de toute nature dans le cours d'eau;
- tout réseau aérien traversant le lit du cours d'eau. Les réseaux aériens existants seront mis en conformité dans un délai de 5 ans.

c. Aménagements

En l'absence d'un plan d'action d'aménagement et de gestion du cours d'eau à l'échelle du bassin versant et d'un maître d'ouvrage unique identifié, toute action visant à modifier les conditions d'écoulement du cours d'eau pour la crue de référence (modification des profils en long, en travers, busages, aménagements paysagers, etc.) est interdite.
d. [...]

4.3 - Pratiques culturales

Dans la zone de production ou d'aggravation de l'aléa.
i. L'arrachage et le défrichement des structures de haies (continues ou discontinues) et des groupements ligneux d'une surface supérieure à $10 \mathrm{~m}^{2}$ sont interdits dans les zones de production et d'aggravation de l'aléa. ii. Une couverture herbacée sous les cultures arborées est rendue obligatoire dans un délai de trois ans.
iii. La plantation de vigne est soumise au respect des prescriptions suivantes :

- la longueur des rangs de ceps dans le sens de la pente est limitée à 20 m ;
- une compensation de l'extension de la surface du vignoble pour freiner les écoulements par des plantations ou la création d'obstacles à l'écoulement; - la création de zones tampon (fossés, retenues, haies, etc.) entre le vignoble et l'urbanisation en utilisant au mieux la présence des voiries;
- l'enherbage du vignoble;
- la mise en place de bassins d'orage pour intercepter les particules arrachées par l'érosion et éviter l'obturation du réseau d'assainissement.
iv. [...]

Il est recommandé de favoriser les engazonnements ou les embuissonne-
ments dans les secteurs non cultivés, de limiter les assolements des cultures qui laissent les sols nus durant les saisons critiques de l'année.

4.4-Assainissement

La collectivité territoriale engagera les études préalables indispensables à l'établissement du zonage d'assainissement pluvial dans un délai d'un an. Il permettra de définir :

- les zones où des mesures doivent être prises pour limiter l'imperméabilisation des sols et pour assurer la maîtrise du débit et de l'écoulement des eaux pluviales et de ruissellement ;
- les zones où il est nécessaire de prévoir des installations pour assurer la collecte, le stockage éventuel et, en tant que de besoin, le traitement des eaux pluviales et de ruissellement, lorsque la pollution qu'elles apportent au milieu aquatique risque de nuire gravement à l'efficacité des dispositifs d'assainissement.
Le zonage sera approuvé dans un délai de quatre ans. Les dispositions prévues figureront dans le règlement d'assainissement et dans le PLU de la collectivité territoriale.
[...]

Programme de diagnostics des zones soumises à des crues brutales

Le travail engagé, après les inondations catastrophiques de Nîmes le 3 octobre 1988, par la mission technique dirigée par M . Ponton, ingénieur général des Ponts et Chaussées, a permis d'établir une liste non exhaustive d'agglomérations susceptibles d'être menacées :

- Alpes-de-Haute-Provence :

Château-Arnoux, Digne, Manosque, Sisteron.

- Alpes-Maritimes :

Antibes, Beaulieu, Beausoleil, Cannes, Cap-d'Ail, Carros, Èze, Gattières, Grasse, Menton, Nice, Roquebrune-Cap-Martin, Saint-Jean-Cap-Ferrat, Sophia-Antipolis, Villefranche-sur-Mer.

- Ardèche :

Aubenas, Bourg-Saint-Andéol, Le Teil, Viviers.

- Ariège :

Foix.

- Aude :

Carcassonne, Fitou, Lézignan, Limoux, Narbonne.

- Bouches-du-Rhône :

Aix-en-Provence, Carry-le-Rouet, Cassis, La Ciotat, Gardanne, Marseille, Martigues, Sausset-les-Pins, Vitrolles.

- Corse :

Ajaccio, Bastia.

- Drôme :

Montélimar.

- Gard :

La Grand-Combe, Saint-Christol--ès-Alès, Le Vigan, Villeneuve-lès-Avignon.

- Hérault :

Béziers, Lodève, Montpellier, Sète.

- Lozère :

Florac, Mende.

- Pyrénées-Atlantiques :

Saint-Jean-de-Luz.

- Pyrénées-Orientales :

Céret, Collioure, Prades, Vernet-les-Bains.

- Var :

Bandol, Cavalaire, Draguignan, Hyères, SainteMaxime, Saint-Raphaël, Saint-Tropez, Sanary-surMer, Toulon.

- Vaucluse :

Apt, Vaison-la-Romaine.
La circulaire du 16 août 1994 précise par ailleurs les éléments de la politique de prévention du risque d'inondations rapides et indique l'engagement d'un programme de diagnostic des zones soumises à des crues brutales dans trente départements du sud-est de la France. L'effort a particulièrement porté sur les zones urbanisées où la présence humaine est concentrée (500 habitants minimum). Chaque commune fait l'objet d'une cartographie au 1:25 000 où sont reportés la géomorphologie de la rivière, les limites des bassins versants péri-urbains et les renseignements concernant les crues historiques.

État d'avancement des dossiers d'information et des PPR inondations (situation de mai 2002) des communes identifiées dans le rapport Ponton

Département	Commune	Document d'information	PPR (*)
PYRÉNÉES-ATLANTIQUES	Saint-Jean-de-Luz	DCS (n)	A
ARIĖGE	Foix	DCS (n)	P
PYRÉNÉES-ORIENTALES	Collioure	DCS (n)	A
	Vernet-les-Bains	DCS (en cours)	A
	Céret	DCS (en cours)	P
	Prades	DCS (n)	A
	Barcarès	DCS (n)	A
AUDE	Lézignan	DCS (n)	A+P (2 rivières)
	Limoux	DCS (en cours)	P
	Narbonne	DICRIM	P
	Carcassonne	DCS (n)	A
HÉRAULT	Lodève	DCS (n)	A
	Béziers	DCS (n)	A
	Sète	DCS (envisagé)	Non
	Montpellier	DICRIM (en cours)	A
GARD	Le Vigan	DCS (envisagé)	A
	La Grand-Combe	DCS (n)	P
	Saint-Christol-lès-Alès	DCS (envisagé)	P
	Villeneuve-lès-Avignon	DCS (en cours)	A
LOZĖRE	Florac	DCS (envisagé)	A
	Mende	DCS (envisagé)	A
ARDĖCHE	Aubenas	DCS (non envisagé)	P
	Bourg-Saint-Andéol	DCS (en cours)	A
	Viviers	DCS (en cours)	A
	Le Teil	DCS/DICRIM (n)	A
VAUCLUSE	Apt	DCS (en cours)	Non
	Vaison-la-Romaine	DCS (n)	P
DRÔME	Montélimar	DCS/DICRIM (n)	A
ALPES-DE-HAUTE-PROVENCE	Digne	DCS (en cours)	A
	Manosque	DCS/DICRIM (n)	A
	Château-Arnoux-Saint-Auban	DCS (en cours)	A
	Sisteron	DCS (en cours)	A
BOUCHES-DU-RHÔNE	Cassis	DCS (n)	A
	La Ciotat	DCS (n)	P
	Martigues	DICRIM (n)	Non
	Marseille	DICRIM (envisagé)	Non
	Vitrolles	DCS (n)	P
	Aix-en-Provence	DICRIM (n)	P
	Gardanne	DCS (n)	P

État d'avancement des dossiers d'information et des PPR inondations [suite]

Département	Commune	Document d'information	PPR (*)
VAR	Toulon	DCS (n)	A
	Bandol	DCS (n)	P
	Sanary-sur-Mer	DCS (n)	P
	Hyères	DCS (envisagé)	P
	Saint-Tropez	DCS (envisagé)	Non
	Sainte-Maxime	DCS (n)	A
	Saint-Raphaël	DCS (n)	A
	Cavalaire	DICRIM (n)	Non
	Draguignan	DCS (n)	P
ALPES-MARITIMES	Nice	DICRIM (n)	$\mathrm{A}+\mathrm{P}$ (2 rivières)
	Menton	DICRIM (n)	Non
	Antibes	DICRIM (n)	A
	Carros	DICRIM (n)	P
	Gattières	DCS (n)	P
	Grasse	DICRIM (n)	Non
	Cannes	DCS (n)	A + P (plusieurs vallons)
CORSE-DU-SUD	Ajaccio	DCS (en cours)	A
HAUTE-CORSE	Bastia	DCS (n)	P

DCS (n) = notifié - DICRIM (n) = arrêté $-A=$ approuvé $-P=$ prescrit
(*) Les PSS, PER sont comptabilisés comme des PPR inondations approuvés.

Nombre de communes (> 500 hab.) affectées par un ou plusieurs risques d'inondation et avancement des PPR inondations (toutes communes confondues, mai 2002).

Département	CT	RU	CT+RU	CP+CT	CP+RU	$\begin{aligned} & \mathrm{CP}+\mathrm{CT} \\ & +\mathrm{RU} \end{aligned}$	Total	Risque majeur (13)	PPR approuvés (14)	PPR approuvés dep. 1996	PPR prescrits
ALPES-DE-HTE-PROV.	156	2	17	1	0	0	176	-	25	16	9
ALPES-MARITIMES	41	6	22	4	1	6	80	49	20	20	20
ARDĖCHE	63	20	24	4	3	4	118	19	21	21	37
ARIĖGE	44	0	0	6	0		50	-	24	0	3
AUDE	39	52	26	4	0	1	122	44	4	1	118
AVEYRON	12	2	1	1	5	1	22	7	5	5	15
BOUCHES-DU-RHÔNE	18	24	7	0	1	0	50	27	12	12	30
CANTAL	29	21	10	5	14	4	83	31	0	0	15
CORSE-DU-SUD	21	3	20	0	0	0	44	19	28	28	9
DRÔME	73	28	36	5	6	1	149	10	14	8	50
GARD	20	58	10	0	64	0	152	18	80	59	66
HAUTE-CORSE	17	31	13	0	0	0	61	26	20	20	38
HAUTE-GARONNE	44	23	3	6	19	0	95	51	36	26	71
HAUTE-SAVOIE	28	0	0	0	0	0	28	13	94	65	34
HAUTES-ALPES	22	3	27	0	0	0	52	15	2	2	21
HAUTES-PYRÉNÉES	27	0	0	0	0	0	27	11	23	11	23
HÉRAULT	33	141	26	4	29	0	233	17	59	50	38
ISĖRE	7	28	23	0	2	4	64	15	97	16	25
JURA	68	83	31	4	12	1	199	6	10	8	94
LOT	5	2	0	0	0	0	7	-	1	0	73
LOZÈre	23	9	37	0	0	0	69	40	16	16	5
PUY-DE-DÔME	0	0	14	7	0	1	22	-	12	11	32
PYRÉNÉES-ATLANTIQUES	37	7	1	4	4	0	52	-	39	33	34
PYRÉNÉES-ORIENTALES	58	45	44	0	0	0	147	16	67	17	17
RHÔNE	20	24	24	5	7	1	91	-	35	21	24
SAVOIE	15	0	15	0	0	2	32	12	27	21	65
TARN	28	19	42	3	13	2	107	3	1	1	101
TARN-ET-GARONNE	27	11	21	9	4	7	79	10	194	194	0
VAR	15	12	17	0	4	0	48	-	11	6	27
VAUCLUSE	51	19	30	2	11	7	120	-	14	13	61
TOTAL	1041	673	541	74	199	16	2579		991	701	1155

$C T=$ crue torrentielle, $R U=$ ruissellement urbain, $C P=$ crue de plaine, $-=$ non renseigné.
13 Pour ces communes, les crues présentent assurément des risques pour les vies humaines. De graves erreurs d'aménagement ont été commises. Les dégâts matériels peuvent être très importants.
14 Sont comptabilisés les PSS et PER valant PPR inondations.

La pratique des courbes IDF

Principes de construction

Pour élaborer les courbes IDF, il faut repérer plus particulièrement, pour chaque épisode pluvieux d'un poste pluviographique donné, la hauteur de pluie maximum en un pas de temps donné. Les couples «hauteur de pluie - pas de temps » sont alors transformés en intensité de pluie. Ensuite, il est retenu les intensités maximales annuelles pour chaque pas de temps et ce pour toutes les années où la pluie a été enregistrée.
Il s'agit ensuite d'attribuer une fréquence expérimentale F aux valeurs de l'échantillon et d'ajuster à cet échantillon une loi statistique théorique qui le représentera le mieux. Cette loi théorique permet de représenter l'échantillon «sous forme synthétisée» et d'extrapoler les valeurs de l'échantillon. Cette fréquence F est la fréquence de non-dépassement de l'événement.

Exemple d'un dépouillement d'un pluviographe sur cinq années

Rang	Maximums annuels des intensités en mm / h			
	6 min.	15 min.	\ldots	$\mathrm{i} /(\mathrm{n}+1)$
1	67	58	F	
2	76	60	$1 /(5+1)$	0,166
3	92	72	$2 / 6$	0,333
4	112	81	$3 / 6$	0,500
5	120	88	$4 / 6$	0,666
II existe donc cinq valeurs de maximum annuel pour les intensités				

On classe les valeurs de l'échantillon et on en calcule pour chaque rang i la valeur de la fréquence F de non-dépassement. On choisit ensuite a priori une loi statistique et l'ajustement à cette loi se fait par un calcul numérique ou graphiquement. Le report des couples «valeurs de rang i - fréquence F attribuée à cette valeur de rang i » sur le graphique où l'on ajuste la loi statistique théorique permet de mieux se rendre compte si la loi choisie est adaptée à l'échantillon.

En reportant les fréquences de non-dépassement F attribuées à chaque valeur de l'intensité (pour un pas de temps donnée et l'échantillon classé dans un ordre décroissant) en abscisse graduée suivant la loi de Gumbel et en ordonnée la valeur de l'intensité correspondant à F , les points doivent être relativement alignés si l'échantillon suit la loi de Gumbel. Dans le cas contraire il faudra essayer une autre loi statistique.

Le tableau ci-dessous fournit 21 valeurs de l'intensité pluviométrique maximum annuelle en 2 h , 3 h et 6 h , classées par ordre décroissant.

Exemple d'intensité pluviométrique maximum annuelle en $2 h, 3 h$ et $6 h$.

Rang	2 h.	3h	6h	F
1	66	45	29	0,9545
2	53	39	26	0,9091
3	52	39	25	0,8636
4	48	39	25	0,8182
5	44	36	22	0,7727
6	40	28	19	0,7273
7	38	28	18	0,6818
8	37	26	16	0,6364
9	34	25	15	0,5909
10	32	24	15	0,5455
11	29	23	14	0,5
12	25	22	14	0,4545
13	25	21	14	0,4091
14	24	19	12	0,3636
15	23	17	12	0,3182
16	22	17	12	0,2727
17	21	16	10	0,2273
18	19	15	10	0,1818
19	18	15	9	0,1364
20	17	11	8	0,0909
21	14	10	5	0,0455

La fréquence expérimentale de non-dépassement attribuée à ces valeurs est donc :

$$
F=1-\frac{i}{n+1}
$$

Par exemple, pour la valeur du $3{ }^{\mathrm{e}}$ rang :

$$
F=1-\frac{3}{21+1}=0,8636
$$

Les valeurs des couples «intensité - fréquence de non dépassement» sont reportées par pas de temps sur le graphe ci-après, les abscisses étant graduées suivant la loi de Gumbel [fig. A.1].

On observe alors que les points «s'alignent»; on peut tracer graphiquement une droite représentative de l'échantillon. Il est alors possible d'extrapoler les valeurs ; par exemple l'intensité en 3h de période de retour 20 ans est de $47 \mathrm{~mm} / \mathrm{h}$. Les courbes obtenues s'intitulent «intensité - fréquence pour des durées de pluies constantes». À noter que l'extrapolation peut se faire si le nombre de valeurs de l'échantillon est assez important.

Fig. A. 1 - Courbes « intensité-fréquence de non dépassement ».

Construction des courbes «intensité- durée - fréquence»

On reporte les couples «intensité- durée», pour une fréquence constante, sur un graphique gradué en temps en abscisse et intensité en ordonnée. Pour cela, il s'agit de reporter les points de la courbe IF ffig. A.2] se situant sur la verticale issue d'une fréquence constante (ou période de retour) pour les durées dont on dispose. Le graphique est gradué avec des échelles logarithmiques [fig. A. 3 page suivante], car la courbe «intensité - durée pour une fréquence constante» est généralement exprimée sous la forme $\mathrm{i}_{\mathrm{T}}=$ a.tb ${ }^{\mathrm{b}}$, avec i en mm / h, ten mn et $\mathrm{T}=$ période de retour.
Les valeurs d'intensités décennales sont les suivantes:

6 h	$\mathrm{i}=26 \mathrm{~mm} / \mathrm{h}$	30 min	$\mathrm{i}=105 \mathrm{~mm} / \mathrm{h}$
3 h	$\mathrm{i}=40 \mathrm{~mm} / \mathrm{h}$	15 min	$\mathrm{i}=155 \mathrm{~mm} / \mathrm{h}$
2 h	$\mathrm{i}=55 \mathrm{~mm} / \mathrm{h}$	6 min	$\mathrm{i}=200 \mathrm{~mm} / \mathrm{h}$
1 h	$\mathrm{i}=80 \mathrm{~mm} / \mathrm{h}$		

Fig.A. 2 - Relevé des points des différentes IF sur la verticale $T=10$ ans de 6 heures à 6 minutes (les courbes de durée inférieure à 2 heures ne sont pas reportées sur le graphique).

Fig. A. 3 - Élaboration de la courbe IDF pour une fréquence $F=0,9$ ($T=10$ ans)

Il en ressort que $a=492$ et $b=-0,45$, donc $\mathrm{i}_{10}=492 \cdot t^{-0,45}$ dans l'intervalle de temps $6 \mathrm{~min}-2 \mathrm{~h}$.

Cet exemple montre qu'il est nécessaire de connaître le domaine de validité des coefficients pluviométrique a et b . Il faut se garder d'extrapoler une courbe IDF au-delà de son domaine de validité. La démarche consistant à élaborer les courbes IDF et à déterminer leurs coefficients pluviométriques a et b comportent des ajustements et lissages. La courbe représentative est alors une approximation des valeurs issues des

On observe sur le graphe que les points s'ajustent assez bien suivant deux droites d'intervalles 6 min $2 h$ et $2 h-6 h$. Les coefficients a et b de ces droites $\mathrm{i}_{10}=\mathrm{a} . \mathrm{t}^{\mathrm{b}}$ se déterminent en posant:

$$
\log i=\log a+b \cdot \log t
$$

et en donnant deux couples de valeurs (i,t) pour posséder alors deux équations pour les deux inconnues a et b.

Par exemple pour les courbes comprises entre 6 min et 2 h :
(1) $\mathrm{t}=6 \mathrm{~min} \mathrm{i}=220 \mathrm{~mm} / \mathrm{h}$
(2) $\mathrm{t}=120 \mathrm{~min} \quad \mathrm{i}=57 \mathrm{~mm} / \mathrm{h}$
(1) $\log 220=\log a+b \log 6$
(2) $\log 57=\log a+b \log 120$
(1) $2,342=\log a+0,778 . b$
(2) $1,756=\log a+2,079 \cdot b$
pluviogrammes. Il est donc illusoire d'accorder aux calculs de débits des bassins versants utilisant des intensités une fiabilité ne prenant pas en compte cette approximation.
Il ne faut pas perdre de vue la notion d'intervalles de confiance dans les ajustements statistiques (les valeurs retenues sur les courbes de Gumbel se situent dans une fourchette qui encadrent ces valeurs).
Les courbes IDF sont à recadrer dans le temps, car l'échantillon de valeurs évolue d'année en année.

Glossaire

Aléa : phénomène entrant dans le domaine des possibilités, donc des prévisions sans que le moment, les formes ou la fréquence en soient déterminables à l'avance. Un aléa naturel est la manifestation d'un phénomène naturel. Il est caractérisé par sa probabilité d'occurrence (décennale, centennale, etc.) et l'intensité de sa manifestation (hauteur et vitesse de l'eau pour les crues, magnitude pour les séismes, largeur de bande pour les glissements de terrain, etc.).

Anthropique : fait par l'être humain ou dû à l'existence et à la présence de l'être humain.

Bassin versant : ensemble des pentes inclinées vers un même cours d'eau et y déversant leurs eaux de ruissellement.

Battance : phénomène par lequel un sol où dominent les sables fins et les limons se tasse sous l'effet de pluies, favorisant ainsi le ruissellement.

BV : bassin versant.
CATNAT : catastrophe naturelle.
Croûte de battance : Voir Battance.
Crue : période de hautes eaux, de durée plus ou moins longue, consécutive à des averses plus ou moins importantes.

Crue de référence : plus haute crue connue pour laquelle on dispose d'un maximum d'informations, permettant notamment le tracé du zonage de l'aléa.

DCS : document communal synthétique.
DICRIM : document d'information communal sur les risques majeurs.
Enjeux : personnes, biens, activités, moyens, patrimoine susceptibles d'être affectés par un phénomène naturel.

Géomorphologie : analyse des conditions naturelles et anthropiques d'écoulement des eaux dans un bassin versant.

Hortonien : le ruissellement à la surface du sol peut advenir quand la pluie (ou les apports à la surface du sol, s'il y a apport venant de l'amont) dépasse la capacité d'infiltration du sol. Dans ce cas, l'excédent ruisselle, on parle de ruissellement hortonien.
IDF : intensité durée fréquence.
Infiltration : pénétration de l'eau dans le sol ou dans des roches poreuses. L'infiltration se produit quand l'eau s'introduit dans les pores de la roche ou entre les particules du sol sous l'effet de la gravité ou de I'humectation progressive de petites particules par action capillaire.
Modélisation :simulation descriptive, statistique ou autre d'un processus, d'un phénomène ou d'activités qu'il est difficile ou impossible d'observer directement.

PAC : porter à connaissance.
PC : poste de commandement.
PER : plan d'exposition aux risques (voir PPR).

Période de retour: moyenne à long terme du temps ou du nombre d'années séparant un événement de grandeur donnée d'un second événement d'une grandeur égale ou supérieure. Le temps de retour n'est qu'une autre façon d'exprimer, sous une forme qui se veut plus imagée, la probabilité d'un événement à un moment donné. Malgré son nom sans doute bien mal choisi, il ne fait référence à aucune notion de régularité ou de périodicité et peut même s'appliquer à des évènements qui ne se sont pas produits et qui ne se produiront peut-être jamais à l'avenir.
PIG : programme d'intérêt général.
PLU : plan local d'urbanisme.

POS : plan d'occupation des sols.
PPR : plan de prévention des risques naturels prévisibles. Les PER et les PSS approuvés avant le 2 février 1995 valent PPR.

PSS : plan de surfaces submersibles (voir PPR).

Ruissellement : circulation d'eau à la surface du sol, qui prend un aspect diffus sur des terrains ayant une topographie homogène et qui se concentre lorsqu'elle rencontre des dépressions topographiques.
SAGE : schéma d'aménagement et de gestion des eaux.

SCOT : schéma de cohérence territoriale.

SDAGE : schéma directeur d'aménagement et de gestion des eaux.
SIG : système d'information géographique.
SRU : loi relative à la Solidarité et au Renouvellement urbain, $n^{\circ} 2000-1208$ du 13 décembre 2000.

Thalweg: plus petite zone de dépression ou en creux détectable sur les courbes de niveau des cartes au 1:25 000 de l'IGN.

Vulnérabilité : propension d'une personne, d'un bien, d'une activité, d'un territoire à subir des dommages suite à une catastrophe naturelle d'intensité donnée. Ainsi, par exemple, la vulnérabilité d'un territoire peut être regardée comme la somme des vulnérabilités individuelles de ces composants (population, habitat, activités, infrastructures, etc.) à laquelle on ajoute certaines appréciations propres à ce territoire (essentiellement la morphologie urbaine: un quartier composé de petites ruelles étroites est plus « vulnérable » qu'un autre où les accès sont facilités par des voies larges). Mais elle n'est jamais une quantification mathématique, plutôt une appréciation à dire d'expert.

Principales références bibliographiques

2001 - Le plan local d'urbanisme. In Le Courrier des Maires.
CERTU, 1998 - Ruissellement urbain et POS, approche et prise en compte des risques. 100 p .
CERTU, 1999 - Valoriser les zones inondables dans l'aménagement urbain. Repères pour une nouvelle démarche. 232 p .
CERTU, 2000-Organiser les espaces publics pour maîtriser le ruissellement urbain. 124 p .
CERTU, 2002 - Catastrophes naturelles à répétition par orages, mécanismes naturels, anthropiques et administratifs. 70 p.
CERTU, CETE Méditerranée, 1998 - Méthodologie des PPR, exemple d'application au cas de Pertuis. 22 p.
DDE de la Gironde, 2000 - Les possibilités offertes par le POS pour la prise en compte du risque hydrologique.
DDE de la Seine-Maritime, 2001-Le PPR du bassin de l'Austreberthe et du Saffimbec.
DDE du Rhône - Bassin versant du ruisseau du Ravin, PPR inondation.
ENPC, 1998 - Droit, jurisprudence et responsabilités en matière des risques naturels prévisibles. 45 p .
ENPC, 1998 - Le programme de prévention contre les inondations liées au ruissellement pluvial urbain et aux crues torrentielles. 10 p .

ENPC, 1998-Réglementation relative aux ruissellements et écoulements d'eaux pluviales. 34 p .
GRAIE, 2001 - La gestion de l'eau à l'échelle des bassins versants, que fait-on des eaux pluviales. 69 p., annexes.
LCPC, Institut de mécanique de Grenoble, 1990 - Inventaire des bassins versants soumis à des crues rapides. 4 p., annexes, cartes.

Météo-France, ministère de l'Aménagement du territoire et de l'Environnement, 1999-Estimation des hauteurs de précipitations d'occurrence rare pour des durées de cumul de 1 à 10 jours sur 3000 postes français, méthode du renouvellement. 463 p .

Ministère de l'Aménagement du territoire et de l'Environnement, 1999-Plans de prévention des risques naturels, risques d'inondations, guide méthodologique. 124 p .

Ministère de l'Aménagement du territoire et de l'Environnement, 2001 - Inondations et coulées boueuses en Seine-Maritime, propositions pour un plan d'action. Rapport de l'inspection générale de l'environnement. 66 p., annexes.

Ministère de l'Environnement, 1989 - Catastrophe de Nîmes, rapport de la mission technique. 69 p.
Ministère de l'Environnement, 1994-Ruissellement pluvial urbain. 85 p.
MISE 76, 1997-Rapport d'expertise sur la crue du 16 juin 1997 à Saint-Martin-de-Boscherville et à Villers-Écalles.
RES'EAU, CERTU, 2001 - Mémento pour la gestion des projets d'assainissement, les eaux pluviales. 52 p .

Depuis 1982, près de 75% des communes ont été sinistrées au moins une fois par les apports de bassins versants dont la taille est inférieure à quelques dizaines de km^{2}. Les phénomènes météorologiques engendrant ces catastrophes sont constitués dans la plupart des cas par des pluies intenses de courte durée mais également par des épisodes pluvieux s'étalant sur un, voire plusieurs jours. Ces précipitations contribuent également au déclenchement de glissements de terrain et à la formation de coulées de boue.

Les causes de ces catastrophes sont multiples, l'insuffisance des réseaux d'assainissement des eaux pluviales, l'urbanisation dans le lit majeur, voire sur le lit mineur des petits cours d'eau, ou plus simplement la concentration des flots.

Les plans de prévention des risques naturels prévisibles institués par l'article L.562-1 du Code de l'environnement (décret d'application du 5 octobre 1995) et élaborés sous l'autorité du préfet de département, constituent un élément majeur du dispositif de prévention des inondations, y compris par ruissellement.

Pour aider les services de l'État dans l'élaboration de ces plans, la direction de la Prévention des pollutions et des risques a rédigé cette note complémentaire au guide méthodologique sur les risques d'inondation édité en 1999. Cette note situe les plans de prévention des risques naturels prévisibles par rapport aux outils relevant de la compétence des collectivités territoriales, en particulier le zonage assainissement pluvial et le plan local d'urbanisme. Elle complète les méthodes et les moyens d'analyse des phénomènes de ruissellement pluvial urbain et de cartographie des aléas.

Cette note s'adresse également aux collectivités territoriales qui doivent intégrer le risque dans les documents d'urbanisme, aux spécialistes qui seront chargés des études techniques, et plus largement à ceux, associations, particuliers, entreprises, qui souhaitent comprendre comment le ruissellement pluvial urbain peut être pris en compte dans l'aménagement.

[^0]: 1 - Arrêté du 5 septembre 2000, portant modification de l'article A.125-1 et création de l'article A.125-3 du Code des assurances - JO, 12 sept. 2000, p. 14300.

 2 - Cette typologie regroupe l'ensemble des phénomènes d'inondation hormis les remontées de nappes.

[^1]: 3 - Art. L.211-7 du C. env.

[^2]: 4 - Voir également l'arrêté interministériel du 27 mai 2003 relatif à l'affichage

[^3]: 5 - Pour les épisodes pluvieux plus fréquents il conviendra d'estimer au mieux la valeur de ce coefficient.
 6 - On pourra utilement se reporter aux études : «Estimation des hauteurs de précipitations d'occurence rare pour les durées de cumul de 1 heure à 24 heures sur 120 postes en France», Météo-france, MATE-DPPR, 1998, « Estimation des hauteurs de précipitations d'occurence rare pour les durées de cumul de 1 à 10 jours sur 3000 postes français », Météo-france, MATE-DPPR, 1999.

[^4]: 7 - Pour mémoire. Les concepts présentés dans le guide méthodologique (plans de prévention des risques naturels, risques d'inondations, 1999 : p. 71 et s.) demeurent valables.

 8 - La structure du règlement suivra l'organisation présentée dans le guide méthodologique (plans de prévention des risques naturels, risques d'inondations, 1999 : p. 78 et s.).

[^5]: 9 - Voir en annexe des extraits d'un règlement

[^6]: 10 - En parallèle des études préalables à l'établissement du PPR, une réflexion, avec les représentants de la profession agricole, des agriculteurs et des services de l'État, pourra être initiée sous l'égide du préfet. À partir d'un état de la situation (érosion des sols, productions agricoles, pratiques culturales, contexte économique, etc.), ce groupe de travail pourra formuler des propositions concrètes pour limiterle ruissellement et/'érosion des sols. Ces mesures d'accompagnement indispensables pourront être formalisées par voie conventionnelle entre les acteurs agricoles et les collectivités territoriales concernées.

