Projet de guide méthodologique pour l’évaluation facteurs humains des collimateurs tête haute

HUD : Head-Up Display
PROJET DE GUIDE MÉTHODOLOGIQUE POUR L’ÉVALUATION FACTEURS HUMAINS DES COLLIMATEURS TÊTE HAUTE (HUD)

ONERA - IMASSA

Mai 2005
Résumé :

Ce document constitue le projet de guide méthodologique pour l'évaluation des aspects facteurs humains (FH) des HUD, établi dans le cadre de la seconde tranche de l'étude sur les symbologies des collimateurs tête haute (HUD), réalisée en collaboration avec l'Institut de Médecine Aéronautique du Service de Santé des Armées (IMASSA) et pour le compte du SFACT, dans le cadre de son programme de recherche pré normative sur la sécurité de l'aviation civile. Ce projet de guide a été élaboré avec le concours des experts chargés de la certification et en s'appuyant sur l'expérience d'un programme de développement et certification de HUD en cours chez Airbus.

Mots-clés :

avion de transport - certification - facteurs humains - réglementation - symbologie - collimateur tête haute - HUD

Suivi des modifications

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Auteur</th>
<th>Objet</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1.1</td>
<td>08/04/04</td>
<td>A.L. Marchand</td>
<td>Version initiale Transmis SFACT/N pour avis</td>
</tr>
<tr>
<td>0.1.2</td>
<td>16/04/04</td>
<td>A.L. Marchand</td>
<td>Révision selon 1ères observations SFACT/N</td>
</tr>
<tr>
<td>0.1.3</td>
<td>27/04/04</td>
<td>P. Le Blaye</td>
<td>Mise en forme, maj chap. définitions et réglementation (EASA), abréviations et annexes 1 et 2. Transmis SFACT/R pour info</td>
</tr>
<tr>
<td>0.1.4</td>
<td>10/05/04</td>
<td>P. Le Blaye</td>
<td>Complément abréviations, relecture chapitres 2 et 3.</td>
</tr>
<tr>
<td>0.1.5</td>
<td>02/06/04</td>
<td>P. Le Blaye</td>
<td>Chap 1 (scope), révisions chap 2 et 3 suite à réunion Airbus du 11/05/04.</td>
</tr>
<tr>
<td>0.1.6</td>
<td>07/06/04</td>
<td>A.L. Marchand</td>
<td>Mise en forme chapitres 5, 6 et annexes</td>
</tr>
<tr>
<td>0.1.7</td>
<td>27/08/04</td>
<td>ALM & PLB</td>
<td>Compléments réglementation et relecture</td>
</tr>
<tr>
<td>0.1.8</td>
<td>08/09/04</td>
<td>ALM, PLB</td>
<td>Modifications sur le plan</td>
</tr>
<tr>
<td>0.1.9</td>
<td>01/10/04</td>
<td>tous</td>
<td>Modifications suite remarques Airbus</td>
</tr>
<tr>
<td>0.1.9.4</td>
<td>11/04</td>
<td>C. Valot, PLB</td>
<td>Modifications, réorganisation suite réunion SFACT (évaluation préalable -> en situation)</td>
</tr>
<tr>
<td>0.1.9.4.3</td>
<td>24/12/04</td>
<td>CV, PLB</td>
<td>Modifications suite entretien D. Poisson</td>
</tr>
<tr>
<td>0.2.0</td>
<td>05/04/05</td>
<td>PLB</td>
<td>Compléments analyse texte FH et références réglementaires.</td>
</tr>
<tr>
<td>0.2.1</td>
<td>12/05/05</td>
<td>CV</td>
<td>Compléments des grilles avec interprétation.</td>
</tr>
<tr>
<td>0.2.2</td>
<td>13/05/05</td>
<td>PLB, CV</td>
<td>Compléments des références réglementaires et interprétation.</td>
</tr>
<tr>
<td>1</td>
<td>31/05/05</td>
<td></td>
<td>Fourniture au SFACT</td>
</tr>
</tbody>
</table>
Liste de diffusion

Destinataires du document :

Extérieurs :

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Personnes</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGAC/DAST/SEA</td>
<td>Mr. Deharvengt</td>
<td>2 ex.</td>
</tr>
<tr>
<td></td>
<td>50, rue Henry Farman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75720 Paris Cedex 15</td>
<td></td>
</tr>
<tr>
<td>AIRBUS Saint Martin</td>
<td>Mmes C. Isaac, D. Blais, F. Reuzeau, Mr Saint Upéry</td>
<td>5 ex.</td>
</tr>
<tr>
<td></td>
<td>316 route de Bayonne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31060 Toulouse Cedex</td>
<td></td>
</tr>
<tr>
<td>IMASSA</td>
<td>Mmes Marchand, Roumes, Mr Valot</td>
<td>5 ex.</td>
</tr>
<tr>
<td></td>
<td>BP 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91223 Brétigny-sur-Orge Cedex</td>
<td></td>
</tr>
<tr>
<td>DGAC/DCS/NO</td>
<td>Mme Tourret, Mr Thibault</td>
<td>2 ex.</td>
</tr>
<tr>
<td></td>
<td>50, rue Henry Farman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75720 Paris Cedex 15</td>
<td></td>
</tr>
<tr>
<td>DGAC/DCS/PN</td>
<td>Mr Beyris</td>
<td>1 ex.</td>
</tr>
<tr>
<td></td>
<td>50, rue Henry Farman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75720 Paris Cedex 15</td>
<td></td>
</tr>
<tr>
<td>DGAC/OCV</td>
<td>Mr Truchetet</td>
<td>1 ex.</td>
</tr>
<tr>
<td></td>
<td>50, rue Henry Farman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75720 Paris Cedex 15</td>
<td></td>
</tr>
<tr>
<td>CEV/Istres</td>
<td>MM. Leblond, Maurin</td>
<td>2 ex.</td>
</tr>
<tr>
<td></td>
<td>Base d’Essais d’Istres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13128 Istres Air</td>
<td></td>
</tr>
<tr>
<td>CEV/Toulouse</td>
<td>Mme Deville, MM. Fabre, Poisson</td>
<td>3 ex.</td>
</tr>
<tr>
<td></td>
<td>18, rue de Roquemaurel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BP 3023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31024 Toulouse Cedex 3</td>
<td></td>
</tr>
</tbody>
</table>

Intérieurs :

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Personnes</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCSD-Toulouse</td>
<td>C. Barrouil</td>
<td>1 ex.</td>
</tr>
<tr>
<td>DCSD-Salon</td>
<td>D. Tristrant, P. Le Blaye</td>
<td>5 ex.</td>
</tr>
<tr>
<td>DCV/A-Châtillon</td>
<td>A. Lafon</td>
<td>1 ex.</td>
</tr>
<tr>
<td>DCV/E-Châtillon</td>
<td>Y. Aurenche</td>
<td>1 ex.</td>
</tr>
<tr>
<td>CID Toulouse</td>
<td></td>
<td>1 ex.</td>
</tr>
</tbody>
</table>
Table of contents

SCOPE : CERTIFICATION ET EVALUATION FH ... 7

1. **REFERENCES DISPONIBLES CONCERNANT LES HUD** .. 10
 1.1. REGLES APPLICABLES POUR LA CERTIFICATION ... 10
 1.2. MOYENS DE DEMONSTRATION DE CONFORMITE .. 10
 1.3. DOCUMENTS SAE ... 11
 1.4. ORGANISATION DE CES TEXTES .. 11
 1.5. ETUDE COMPARATIVE DES TEXTES .. 12
 1.6. TEXTES REGLEMENTAIRES DEDIES AUX ASPECTS FH 14
 1.6.1. Les textes précurseurs ... 14
 1.6.2. Un nouveau texte de référence .. 14

2. **TECHNIQUES ERGONOMIQUES POUR LA CERTIFICATION FH DE HUD** 17
 2.1. LES POINTS DE SUSPICION ... 18
 2.2. DISTINCTION EVALUATION PREALABLE / EVALUATION EN SITUATION 18
 2.3. METHODES POUR L'EVALUATION PREALABLE .. 19
 2.3.1. En pratique ... 19
 2.4. METHODES D'EVALUATION EN SITUATION.. 20
 2.4.1. Définition des comportements attendus - Modélisation 20
 2.4.2. Mise en œuvre des dispositions adaptées à l'observation des comportements . 21
 2.4.3. En pratique ... 24

3. **POINTS DE SUSPICION COMPATIBLES AVEC UNE EVALUATION PREALABLE** 25
 3.1. COLLIMATION ... 26
 3.2. CHAMP DE VISION ET BOÎTE À ŒIL (EYE BOX) .. 28
 3.3. CARACTERISTIQUES GENERALES DE LA SYMBOLOGIE 30
 3.4. COHERENCE DES SOURCES DE DONNEES DU HUD 33
 3.5. AFFICHAGE DES PANNES .. 35
 3.6. POSITIONNEMENT DU PILOTE .. 37
 3.7. REGLAGE DE LA LUMINOSITE .. 39

4. **POINTS DE SUSPICION REQUERANT UNE EVALUATION EN SITUATION** 42
 4.1. INTERPRETATION DES SYMBOLES ... 43
 4.2. COMPATIBILITE AVEC LES AFFICHAGES EN TETE BASSE 46
 4.3. LOGIQUE ET AFFICHAGE DES MODES, CONFUSION DE MODES AFFICHES PAR LE HUD 48
 4.4. CLUTTER .. 52
 4.5. PERFORMANCE DU PILOTAGE SOUS HUD ... 55
 4.6. UTILISATION POUR LE PILOTAGE DES MANŒUVRES RAPIDES 58
 4.7. UTILISATION POUR LE PILOTAGE DES TRANSITIONS 60
 4.8. UTILISATION AUX ATTITUDES INUSUELLES ET REPRESENTATION SPATIALE DU PILOTE 62
 4.9. CHARGE DE TRAVAIL INDUITE PAR LE HUD ... 64
 4.10. PARTAGE DES INFORMATIONS, MONITORING ET INTERACTIONS DANS UN COCKPIT HUD 68
 4.11. INTEGRATION DU HUD VIS-A-VIS DES OPERATIONS 70
 4.12. HUD AVEC IMAGERIE (EVS) .. 73
 4.13. HUD DUAL .. 76

5. **CONCLUSION** ... 77

LISTE DES ABBREVIATIONS .. 78

ANNEXE 1 : TYPE D'APPLICATION, INTEGRITE ET DISPONIBILITE, CONCEPT D'EMPLOI 80

ANNEXE 2 : CATEGORIES D'OPERATIONS .. 82

ANNEXE 3 : SYNTHESIS OF THE EXISTING REGULATIONS 83

ANNEXE 4 : DESCRIPTION PAR SYMBOLES ... 84
Scope : Certification et évaluation FH

Ce document se veut un guide pour l'évaluation orientée sur les facteurs humains des symbologies des collimateurs tête haute (HUD), à l'usage des autorités et experts chargés de leur certification, et également des concepteurs dans la mesure où le processus de certification doit intervenir, autant que possible, en amont.

Il est établi dans le cadre d'une action de recherche, il ne peut en aucun cas être considéré, en l'état, comme un élément de la réglementation.

Il concerne l'évaluation des HUD : est désigné sous le terme générique HUD, ou collimateur tête haute, un instrument de pilotage présentant en tête haute et en superposition à la vision de l'extérieur du cockpit, des informations sous forme de symboles filaires numériques (caractères alphanumériques) ou analogiques (forme géométrique dans un espace à deux dimensions). Il présente deux caractéristiques fondamentales : l'image est collimatée à l'infini (ou à une distance suffisante pour que l'œil soit accommodé comme à l'infini) et conforme au monde extérieur (hormis pour certaines phases de vol ou opérations particulières – grande incidence, fort vent de travers, attitudes inusuelles,… où des symboles pourraient se trouver hors champ : cageage des symboles et compression d'échelle sont des solutions fréquemment employées). Il est destiné à l'aviation de transport civil, dans tous ses contextes d'utilisation (roulage, décollage, vol en route et approche contrôlée, IFR/VFR, roll out,…). Le HUD est un instrument de bord électronique (EFIS) qui présente des caractéristiques particulières.

Ce guide est destiné à l'évaluation centrée sur les facteurs humains ; en particulier il n’aborde pas les aspects techniques de la certification tels que la fiabilité de l'affichage ou l'installation technique du HUD. Il n’aborde que très succinctement les aspects spécifiques aux HUD présentant une imagerie issue de capteurs (EVS).

Ce guide comporte des notes et des liens hyper-textes destinés à faciliter son utilisation.

Dans quel cadre situer l'évaluation des aspects Facteurs Humains (FH) de la certification des HUD ?

L’évaluation du HUD est historiquement paradoxale car les anciens HUD ont été développés et certifiés selon des textes réglementaires pour lesquels ils étaient très en avance. L’essentiel du défrichement et du traitement des innovations technologiques a précédé le développement d'un cadre réglementaire pourtant plus sommaire que celui d'aujourd'hui. L’évaluation est toujours d'actualité car il est maintenant question d'un élargissement des contextes d'usage, d'une plus grande diffusion sur les appareils en opération, d'une mise en interaction entre systèmes incluant le HUD.

Une spécificité opérationnelle apparaît avec le recul à propos des HUD. Des contextes réglementaires très voisins donnent lieu à des développements différents en matière de symbologie. La diversité des contextes opérationnels, des types de machines et des cultures sur le pilotage proprement dit, conduit inévitablement à une diversité des symbologies produites et acceptées. Cet état doit être considéré comme une résultante historique, culturelle et technologique. La question est maintenant de s'assurer de la manière dont ces philosophies de symbologie vont pouvoir supporter la
Projet de guide méthodologique pour l'évaluation facteurs humains des collimateurs tête haute

confrontation avec les innovations envisageables dans les années à venir dans des contextes d'usage variés.

La demande en HUD et les innovations le concernant semblent donc devoir se maintenir, imposant sans doute un travail d'analyse plus complexe lors des certifications. Cette complexité résulte de facteurs multiples :

- l'exploration, par les équipementiers ou les opérateurs, de contextes exploitant des "marges réglementaires",
- les interactions avec d'autres fonctions embarquées (TCAS, GPWS, système de vision infrarouge...),
- l’apparition de trajectoires d'approche non rectilignes.

Dans ces divers cas, le HUD est plus qu'un simple support d'information lors d'une phase de vol relativement limitée. Son usage s'étend, se diversifie et l'obligation d'une certification FH étend encore de domaine de l'évaluation.

L'objet de ce guide est donc de proposer un parcours afin de balayer l'ensemble des points spécifiques d'un processus de certification centré sur les facteurs humains et de s'assurer qu'il n'y demeure pas de zone d'ombre. Les textes en vigueur des deux côtés de l'Atlantique pour la certification facteurs humains indiquent de façon très générale une position commune sur l'approche qu'il convient d'adopter pour sa réalisation :

“Human Factors. Humans are very adaptable, but unfortunately for the display evaluation process they adapt at varying rates with varying degrees of effectiveness and mental processing compensation. Thus, what some pilots might find acceptable and approvable, others would reject as being unusable and unsafe. Airplane displays must be effective when used by pilots who cover the entire spectrum of variability. Relying on a requirement of "train to proficiency" may be unenforceable, economically impractical, or unachievable by some pilots without excessive mental workload as compensation.” (AC/AMC 25-11, 4b.1).

L'approche FH est tout à la fois nécessaire et complexe du fait même de l'adaptabilité, de la diversité des comportements, de la difficulté à apprécier un juste investissement dans ce domaine et, enfin, de la multitude des aspects concernés par cette question.

Cette position est complétée par les propositions de l'AC/ACJ 25-1301(e) sur la certification FH. Ce texte est consacré à des recommandations à propos des erreurs humaines :

For installed systems and equipment used by the flight crew to operate the aircraft in normal and non-normal conditions, and with special consideration for new and novel design, it must be shown that flight deck indications, annunciations, controls, and system logic are designed so that flight crew errors, which may reasonably be expected to occur in service:

i. Are not contributed to by design characteristics.

ii. Can be detected by the flight crew, or if an error is not readily detectable then the aircraft and/or system must be tolerant of such errors (i.e., not result in catastrophic or hazardous outcomes).

iii. Have means to be reversed or recovered from, or if an error is not reversible or recoverable then the effect on aircraft capability must be evident, and not result in catastrophic or hazardous outcomes.

Ces recommandations sont explicites : l'erreur fait partie du fonctionnement humain, il importe que les interfaces n'y contribuent pas, que les erreurs soient détectables et qu'elles soient récupérables. Un modèle de l'erreur humaine y est décrit et des méthodes de mise en conformité sont détaillées.

Le texte SAE ARP 5288 donne quelques éclairages intéressants sur l'évaluation (très voisins de ceux de l'AC/AMC 25-11), notamment sur le programme de test qui doit inclure une quantité
suffisante d'essais en vol et en simulateur avec une population représentative de pilotes pour s'assurer des points suivants :

- Reasonable training times and learning curves;
- Usability in an operational environment;
- Acceptable interpretation error rates equivalent to or less than conventional displays;
- Proper integration with other equipment that uses electronic display functions;
- Acceptability of all failure modes not shown to be Extremely Improbable; and
- Compatibility with other displays and controls.

Autre exemple du besoin d'une mise à l'épreuve humaine directe : la démonstration des performances attendues dans le JAR HUD 901 pour le cas des opérations en catégorie III est fondée sur la réalisation de 1000 atterrissages simulés et de 100 atterrissages effectifs sur avion. Ces manœuvres sont effectuées par au moins 10 pilotes de différents degrés d'expérience dont les licences soient à jour et ayant reçu une formation à l'usage des HUD semblables à celle de pilotes de ligne.

Les indications de la réglementation actuelle concernant la méthodologie d'évaluation apparaissent réduites. Il n'existe pas encore de texte spécifique au HUD décrivant explicitement la méthode et les étapes d'évaluation destinées au certificateur et les textes les plus récents consacrés à l'évaluation facteur humain ne sont pas encore particularisés pour le cas des HUD.

Nous proposons dans un premier temps d'aborder la réglementation liée au HUD (chapitre 1) puis les techniques d'évaluation proposées (chapitre 2). Ensuite, nous distinguerons deux aspects à cette démarche : les évaluations de conformité à des références réglementaires réalisables par confrontation statique (chapitre 3) et les évaluations liées à une mise en situation dynamique (chapitre 4). L'identification de points de suspicion spécifiques sera utilisée dans les deux cas.
1. Références disponibles concernant les HUD

1.1. Règles applicables pour la certification

Les règles de base sont communes à l’EASA et à la FAA :

CS/FAR-25 Large aeroplanes notamment les paragraphes :
- 25.773 Pilot compartment view
- 25.777 Cockpit controls
- 25.1301 Function and installation
- 25.1303 Flight and navigation instruments.
- 25.1309 Equipment, systems and installations
- 25.1321 Arrangement and visibility
- 25.1323 Airspeed indicating system
- 25.1329 Automatic pilot system
- 25.1333 Instrument systems
- 25.1381 Instruments lights
- 25.1523 Minimum flight crew.

OPS 1 sous partie E : Opérations tous temps dont HUD hybride

JAR OPS 4 sous partie 3 : Opérations tout temps avec guidage HUD dont hybride

Sont spécifiques au HUD :

JAR HUDS 901 & ACJ Category 3 operations with a head up display (non hybride, ni dual)

JAR HUDS 902 & ACJ Category 2 operations with a head up display (non hybride, ni dual)

JAR HUDS 903 & GM Head up displays (all types).

1.2. Moyens de démonstration de conformité

AMC 25.11 EFIS (EASA, CS 25 book 2, équivalent FAA AC 25-11)

FAA AC 120-28D
- Opérations en catégorie III

FAA AC 120-29A
- Opérations en catégories I et II

Ces textes sont complétés, éventuellement, par des textes concernant des questions particulières ; ainsi, les memorandum policy de la FAA :

Les CRI (Certification Review Item) pour les JAA et IP (Issue Paper) de la FAA, définissent les moyens de démonstration de conformité utilisés dans le cadre de chaque programme de certification.

Parmi ceux-ci, les conditions spéciales (Special Conditions) complètent la réglementation existante, pour des cas particuliers de certification qui comportent un aspect novateur ou inusuel. Par exemple, pour le cas du HUD dual :

1.3. Documents SAE

SAE ARP 4101 Pilot visibility from the flight deck

Recommandations pour la conception des HUD.

SAE ARP 5287 Optical Measurement Procedures for Airborne Head-Up Display (HUD), March 1999

Guide pour la conception, texte exhaustif spécifique au HUD.

Indications d’ordre technologique pour la conception des HUD.

1.4. Organisation de ces textes

Les textes référencés ci-dessus peuvent être classés selon :
- leur finalité et leur statut,
- le type d'instrument,
- le concept d'emploi (Annexe 1),
- la catégorie d'opération (Annexe 2),
- la phase de vol concernée.

La finalité et le statut du texte

Les textes peuvent être destinés, en priorité, aux concepteurs, aux certificateurs ou aux opérateurs. Ils peuvent également avoir des statuts divers (règle applicable, moyen acceptable pour la démonstration de conformité, recommandation). Ces distinctions restent cependant schématiques,
étant donné, par exemple, que les concepteurs tiennent naturellement compte des contraintes imposées par la certification et que la certification tient compte du contexte prévu pour les opérations.

Le type d’instrument

Plusieurs textes réglementaires sont applicables au HUD, selon la hiérarchie suivante :
- CS-25, en tant qu’instrument de pilotage ;
- AMC 25-11, en tant qu’instrument électronique,
- JAR HUDS 903 et selon la catégorie d’opération visée, 901 ou 902, textes spécifiques au HUD.

Il faut noter que certaines exigences portant sur les instruments de bord en général ne sont pas directement applicables au HUD ; par exemple, les exigences portant sur les codes de couleurs pour les alarmes. Dans ce cas, il est considéré que le HUD est un instrument particulier pour lequel des solutions de remplacement doivent être fournies pour satisfaire l’esprit du texte de base (par exemple, utiliser un clignotement pour compenser l’absence de couleur). C’est l’une des raisons d’être des textes spécifiques au HUD.

Le concept d’emploi

Certains textes sont applicables quel que soit le concept d’emploi, d’autres ne concernent qu’un concept d’emploi particulier. Ainsi, les textes applicables pour les JAA sont :
- pour les concepts HUD de surveillance ou hybride : JAR HUDS 903, CS-AWO, JAR OPS 1
- pour le concept HUD manuel, avec guidage : JAR HUDS 901, 902, 903, JAR OPS 4.

Les textes FAA pour les opérations par faible visibilité (AC 120-28D et 120-29A) sont communs aux trois concepts d’emploi, avec des paragraphes particuliers pour l’application au concept hybride.

Le type d’opération visé

Les textes applicables varient, bien entendu, selon le type d’opération visé pour la certification ; sont ainsi applicables :
- les textes généraux pour toutes les opérations : CS-25, JAR HUDS 903.
- des textes supplémentaires pour les opérations par faible visibilité :
 - FAA AC 120-29A, JAR HUDS 902 et CS-AWO sous partie 2, pour la catégorie II ;
 - FAA AC 120-28D, JAR HUDS 901 et CS-AWO sous partie 3, pour la catégorie III.

La phase de vol concernée

Les textes applicables peuvent porter sur tout ou partie des phases ou situations de vol. En particulier, les phases suivantes sont généralement abordées en raison des exigences particulières qu’elles impliquent pour l’usage du HUD : roulage, décollage, croisière, atterrissage, remise de gaz et attitudes inusuelles.

1.5. *Etude comparative des textes*

Un tableau de synthèse des documents réglementaires est proposé en Annexe 3.

L’analyse des *textes généraux*, non spécifiques aux HUD, ne révèle finalement que des différences minimes entre les textes américains et européens.
Ces textes, et en particulier les textes relatifs aux instruments électroniques, permettent de spécifier de façon relativement détaillée les éléments constitutifs de la symbologie de base de pilotage et de navigation.

Les textes relatifs aux HUD contiennent des adaptations en tenant compte des spécificités de cet instrument ; ils présentent un tableau plus contrasté, selon le type d’opération visé.

Ils indiquent l’existence d’un consensus sur les caractéristiques fondamentales des HUD :
- Affichage monochrome (mais le polychrome apparaît progressivement), collimation à l’infini et conformité avec le monde extérieur ;
- Nécessité d’une compatibilité du HUD avec la tête basse et l’environnement cockpit ;
- Les informations à présenter dépendent fondamentalement du type d’opérations (catégorie visée) et de l’utilisation (en pilotage manuel ou sous pilote automatique).

De même que pour les textes généraux, la constitution des symbologies, est traitée de manière très voisine par les textes américains et européens. Ils n’expriment pas de différence profonde dans le rôle donné au HUD. Même lorsque l’exigence d’un symbole est explicite, ils se limitent généralement à nommer l’information qui doit être présentée, sans préciser davantage comment elle doit être présentée. Ainsi, présentation digitale ou analogique, forme, taille, ou emplacement du symbole sont rarement spécifiés, hormis pour les informations essentielles du T basique.

Il est cependant possible de dégager deux faits marquants :
- La rédaction plus claire et concise des textes JAR HUDS, limités à l’utilisation des HUD par types d’opération, qui est liée à leur organisation par fonctionnalité, au lieu de l’organisation par système des textes FAA (AC 120-29a et 120-28d) ;
- Les précisions apportées par les textes FAA sur le concept d’emploi hybride, explicables probablement par la nouveauté de ce type de système dans l’histoire de l’utilisation des HUD aux Etats-Unis, encore renforcées par l’exigence d’une preuve de concept pour les opérations en catégorie III.

De façon générale, des différences plus significatives entre les textes existants sont donc à rechercher au niveau de leur interprétation.

Enfin, un effort est en cours du côté de la FAA pour combler la faiblesse actuelle de la réglementation américaine en matière de texte général sur les HUD. Les textes en projet sont constitués d’un nouveau texte SAE et d’un document de travail de la FAA destiné à compléter l’AC 25-11. Ces projets doivent être pris en considération dans le souci d’harmoniser la réglementation sur les HUD.

Pour conclure, la constitution d’une symbologie résulte de la confrontation des objectifs différents :
- des concepteurs : compromis de conservation liés à l’image commerciale et au coût de la certification ;
- des certificateurs : assurer une cohérence globale de l’interface et la sécurité dans les conditions d’emploi prévues ;
- des opérateurs : gain opérationnel même modeste mais économiquement chiffrable ;
- des pilotes : appliquer une stratégie efficace en fonction de la formation, de la culture et des expériences antérieures ; assurer la sécurité et le confort de pilotage.
En conclusion, l’analyse de la réglementation révèle un tableau contrasté selon le concept d’emploi et le type d’opération visé ; cependant, il ne fait pas apparaître de différence profonde de conception entre les textes JAA et FAA ; des différences plus significatives sont à rechercher éventuellement au niveau de l’interprétation des textes. Les textes américains actuellement en projet méritent d’être pris en considération pour l’harmonisation des règles de base sur les HUD.

1.6. Textes réglementaires dédiés aux aspects FH

1.6.1. Les textes précurseurs

Un effort est exercé depuis plusieurs années par les autorités de l’aviation civile afin d’établir une réglementation pour mieux formaliser la prise en compte des facteurs humains dans le processus de certification.

La FAA a notamment édité deux documents de politique temporaire :

Provides a comprehensive review and practical methods to insure that the certification plan addresses human factors.

A revised and augmented version of ANM-99-2.

Les JAA ont publié une condition spéciale :

This Special Condition addresses the ‘human factors’ aspects of the novel items, especially in the flight deck, which are not adequately addressed by JAR 25 existing requirements.

Ce texte n’est plus d’actualité en Europe depuis le transfert d’autorité à l’EASA. Il est remplacé par le projet FAR/CS 25.1302 et l’AC/AMC correspondante, établis sous l’impulsion du groupe d’harmonisation FH et référencés ci-dessous.

1.6.2. Un nouveau texte de référence

This rule and its AC/AMC addresses the design and approval of installed equipment intended for the flight crewmembers’ use from their normally seated positions on the flight deck. The guidance is not mandatory and does not constitute a regulation ; it describes acceptable approaches to compliance. It also provides recommendations for the design and evaluation of controls, displays, system behaviour, and system integration, as well as design guidance for error management.

Analyse de la règle et de ses notes explicatives : application au HUD (chap 7.1)

Cette règle est accompagnée de notes explicatives. Le texte de la règle est reproduit ci dessous, avec des explications particularisées au cas du HUD :
This section applies to installed equipment intended for the flight crewmembers’ use in the operation of the airplane from their normally seated position on the flight deck.

La règle s'applique au HUD dont l'utilisation est prévue depuis la position assise normale de l'équipage.

This installed equipment must be shown, individually and in combination with other such equipment....

La certification doit considérer le HUD seul et en combinaison avec les autres équipements. En particulier, le HUD ne doit pas présenter d'information en conflit avec les autres équipements.

...to be designed such that qualified flight crewmembers trained in its use...

L'évaluation du HUD doit considérer des équipages présentant les qualifications et le niveau d’entraînement adéquats. Ainsi les exigences particulières que l’utilisation du HUD pourrait soulever en matière de qualification et d’entraînement doivent être identifiées en parallèle du processus de certification.

...can safely perform their tasks associated with the intended function by meeting the following requirements:

Le HUD doit permettre d’effectuer la tâche pour laquelle il est prévu, dans des conditions normales et anormales, dans les délais et avec la précision requise, avec le niveau de sécurité attendu et sans interférer outre mesure avec les autres tâches requises.

(a) Flight deck controls must be installed and information necessary to accomplish these tasks must be provided,

Le HUD doit présenter les informations requises pour la tâche…

(b) The flight deck controls and information intended for the flight crew use must:

 (1) Be presented in a clear and unambiguous form, at resolution and precision appropriate to the task, and

 … sous une forme claire – compréhensible dans le contexte d’utilisation – et non ambiguë – notamment sur les actions à entreprendre pour réaliser la tâche, et avec une précision adéquate pour la tâche. En particulier, le HUD doit permettre les tâches de pilotage de grande amplitude (interception de trajectoire) autant que le pilotage fin (contrôle de l’assiette). Le défaut de précision peut conduire à une mauvaise tenue de trajectoire, et a contrario, un excès de précision peut induire un surcroît d’activité inutile pour la tâche considérée. Le caractère non ambiguë n’est pas évident avec l’analogique combiné, notamment pour l’interprétation du sens de l’action à entreprendre (exemple : action dans le mauvais sens pour corriger un écart de vitesse).

 (2) Be accessible and usable by the flight crew in a manner consistent with the urgency, frequency, and duration of their tasks, and

 L’utilisation du HUD doit être compatible avec l’urgence, la fréquence et la durée de la tâche pour laquelle il est prévu. En particulier, son utilisation ne doit pas induire de fatigue excessive en rapport avec la durée de la tâche prévue.

 (3) Enable flight crew awareness, if awareness is required for safe operation, of the effects on the aircraft or systems resulting from flight crew actions.

 Au titre de cette règle, le HUD doit aider l’équipage à prendre conscience, lorsque cela est requis pour la sécurité, des conséquences possibles de ses actions sur l’avion ou les systèmes. Ceci concerne en particulier les modes de guidage, le monitoring, ou les alertes.

(c) Operationally-relevant behavior of the installed equipment must be:

 (1) Predictable and unambiguous and

 (2) Designed to enable the flight crew to intervene in a manner appropriate to the task.

 En particulier, les changements automatiques de mode ou d’affichage, ainsi que les lois de guidage propres au HUD doivent être prévisibles et non ambigus, et permettre à l’équipage d’agir de façon appropriée pour réaliser la tâche.

 (d) To the extent practicable, the installed equipment must enable the flight crew to manage errors resulting from flight crew interaction with the equipment that can be reasonably expected in service, assuming flight crews acting in good faith. This subparagraph does not apply to skill-related errors associated with manual control of the airplane.

 Ce paragraphe repose sur le fait que même les équipages qualifiés et entraînés feront des erreurs dans leur interaction avec l’équipement. La possibilité d’erreurs d’entrée de paramètres du HUD (mode, pente glide, longueur et altitude piste,...) est ainsi à considérer.
Approche méthodologique pour la certification (chap. 6)

L’approche recommandée consiste en 3 étapes :
1. identifier les équipements, les fonctions, les tâches selon leur nouveauté, leur complexité et leur niveau d’intégration
2. identifier les exigences réglementaires applicables
3. sélectionner les moyens de démonstration de conformité appropriés

Objectifs de démonstration (chap. 7)

Ce chapitre décrit les objectifs pour lequel le candidat à la certification doit démontrer la conformité. Ces objectifs sont déclinés en différents aspects, dont les suivants sont plus particulièrement applicable au HUD :
- fonction attendue et tâche (7.2) : une analyse formelle de la tâche n’est pas requise ; des questions permettent de préciser le niveau de détail avec lequel la tâche doit être décrite ;
- présentation des informations (7.4) : présentation analogique vs numérique, compatibilité des informations, standardisation, position et priorité des symboles, clutter, temps de réponse sont abordés.
- comportement du système (7.5) : charge de travail et coordination au sein de l’équipage sont des indicateurs, logique et affichage des modes
- intégration (7.6) : concerne essentiellement la compatibilité avec les autres instruments en tête basse, et avec les procédures en opération.

Moyens de démonstration de conformité (chap. 8)

Les moyens possibles sont au nombre de six :
1. Statement of Similarity
2. Design Descriptions
3. Calculation and Engineering Analysis
4. Evaluations (by the applicant)
5. Demonstrations
6. Tests (with the certification authorities present)

Le moyen approprié est sélectionné parmi ces moyens à l’aide d’une liste de questions.

Conclusion sur ce texte

Parmi les textes consacrés à l’évaluation FH, le nouveau paragraphe 25.1302 et son AC/AMC représente une avancée considérable par rapport aux textes précédents difficilement applicables (interim policy) et remarquable en ce qu’elle devrait entrer en vigueur d’abord du côté européen.

L’application des recommandations et des méthodologies issues de ce texte pour le cas du HUD est discutée dans la suite de ce guide pour chacun des points de suspicion identifiés.
2. Techniques ergonomiques pour la certification FH de HUD

L'évaluation FH dans le cadre de la certification puise nombre de ses méthodes dans celles de l'ergonomie. Il en résulte à la fois une facilité - disposer d'un corps de méthodes déjà rodées et partagées - et une difficulté : jusqu'à quel point les méthodes de l'ergonomie sont-elles compatibles avec les objectifs de la certification ?

Bien que la certification FH et l'ergonomie englobent toutes deux les acteurs humains et leurs caractéristiques, elles ont des finalités différentes et entretiennent des rapports paradoxaux.

La finalité de la certification est de s'assurer :
- que le matériel certifié a atteint le niveau de sécurité exigé par les textes en vigueur ;
- que les connaissances opérationnelles disponibles permettent de s'assurer qu'il ne comporte pas de défauts qui soient susceptibles d'être dommageables ou d'échapper au contrôle des usagers et opérateurs.

Cette conformité et cette absence de lacune reconnue sont obtenues et vérifiées au long d'un processus qui accompagne l'évolution du matériel depuis la conception jusqu'à la mise en situation finale. La certification se veut, dans ce cadre, la définition d'un "standard minimum acceptable".

L'évaluation du HUD pour la certification FH comporte deux étapes :
- La première étape de l'acceptation est faite en référence aux règlements retenus pour cela.
- La seconde complète la première par une mise à l'épreuve des faits et de l'expérience des certificateurs. Les règlements, les caractéristiques du matériel et l'expérience des faits sont en interaction étroite dans cette seconde étape.

L'approche ergonomique est d'une nature différente. Elle se situe dans la perspective de "bonnes pratiques" dans l'aménagement des conditions de travail. Il s'agit de s'appuyer sur la connaissance du fonctionnement humain afin de disposer de modèles prédictifs de ce comportement ou de performances dans des conditions données d'interaction avec des dispositifs techniques dont les caractéristiques sont connues. L'aménagement des conditions de travail est ainsi rendu plus précis par une bonne connaissance de ces interactions.

Il en résulte une situation paradoxale entre ergonomie et certification. Les méthodes ergonomiques semblent les plus adaptées aux besoins de la certification FH alors que les résultats qu'elles visent sont au-delà des besoins actuels de la certification FH.

Un continuum existe toutefois entre les méthodes "facteurs humains" de la certification et les méthodes générales de l'ergonomie. Une évolution considérable a été réalisée en certification ces dernières années du fait de la prise en compte croissante de la dimension humaine dans la conception des cockpits. Les méthodes ergonomiques ont fait une quasi-irruption dans le cadre de la certification qui n'était, jusqu'alors, que technique. La nouveauté de la prise en compte des méthodes ergonomiques est parfaitement illustrée par l'existence d'une composante "facteurs humains" dans la certification. Une évolution est en cours avec la maîtrise de ces méthodes tant par les concepteurs que par les certificateurs.
2.1. Les points de suspicion

La question de fond d'une évaluation FH dans un processus de certification est de savoir que chercher. Les analyses possibles sont nombreuses, la diversité des contextes d'usage est importante, les défaillances potentielles à identifier peuvent prendre de multiples formes. Face à cette combinaison et au vaste domaine d'investigation, les équipes de certification ont généralement une stratégie de recherche de point de suspicion.

Un point de suspicion est un cas dans lequel l'interaction entre les caractéristiques du matériel, le contexte, les actions à mener peut être problématique. Par expérience, il est alors nécessaire d'aller vérifier comment, pour ce matériel donné, le constructeur a traité les données de cette interaction : "comment est traitée la remise de gaz en termes de symbologie ?", "comment ce nouveau symbole est-il présenté ?".

Les points de suspicion constituent une sorte de maillage quadrillant le domaine à investiguer.

L'inventaire des points de suspicion à explorer est issu tout autant de l'expérience acquise par les certificateurs dans ce domaine que des nouveautés proposées par le concepteur qu'il est nécessaire d'évaluer.

La stratégie des points de suspicion présente également l'intérêt de servir de référence pour la construction des investigations et des mises en situation. Il est donc attendu de ces mises en situations ciblées qu'elles permettent d'observer le comportement général de la symbologie ou des particularités de configurations d'emploi. En conséquence, les points de suspicion initiaux peuvent être approfondis, diversifiés selon les résultats obtenus lors des investigations. D'autres techniques d'investigation, plus spécialisées, viennent donc en complément.

Cette stratégie de la suspicion sera retenue ici comme cadre général des évaluations FH.

2.2. Distinction évaluation préalable / évaluation en situation

L'évaluation FH d'un HUD peut être dissociée en deux étapes distinctes :

- La première consiste à évaluer la conformité du matériel aux diverses caractéristiques du fonctionnement humain. Ceci est obtenu par comparaison entre les données produites par le concepteur et les données de référence pour le certificateur. Il est donc question d'une évaluation préalable à toute mise en situation. L'usage de moyens de mesure en situation pourra, en situation, compléter cette comparaison.
- La seconde étape vise à apprécier les performances de pilotage qu'il est possible d'obtenir avec ce système. Ces performances sont quantifiables par l'intermédiaire d'une mise en situation par un simulateur ou lors de vols réels. Il est ainsi possible de diversifier les profils de vols, de pilotes, les données des scénarios employés pour produire ces mises en situation.
2.3. Méthodes pour l'évaluation préalable

Leur principe commun est de permettre la comparaison de données de référence avec les éléments disponibles pour le dispositif fournis par le concepteur. Toutefois, la diversité des confrontations possibles est importante car le domaine circonscrit par les aspects FH est large puisqu’il couvre à la fois les aspects physiologiques (lisibilité, taille de caractère, luminosité, caractérisation colorimétrique…) et les dimensions cognitives (cohérence des symboles entre tête haute et autres écrans…).

L’évaluation préalable, en elle-même, est pratiquée en deux temps. Lorsque le HUD arrive au stade des essais en vol, il a déjà fait l'objet de nombreux travaux et évaluations. En particulier, les aspects anthropométriques ou géométriques auront été traités par le concepteur ou lors des étapes initiales de la certification. Le savoir et les règles y sont établis ; la compétence du constructeur les intègre d'emblée sans qu'il soit nécessaire d'en faire un préalable à la certification FH. L'appréciation globale de ces éléments sera faite de manière indirecte, lors de la mise en situation, par laquelle est rendu perceptible l'adéquation des paramètres retenus par le constructeur. Les points de suspicion de cette nature seront rassemblés en début des évaluations préalables.

Le second temps de l'évaluation préalable est consacré aux spécificités du matériel (symbologie, panne…). Les points de suspicion permettent de passer en revue les confrontations pertinentes.

Le tableau ci-dessous montre les grandes lignes de la démarche proposée :

- Description du point de suspicion
- Les textes de référence sur lesquels il est possible de se fonder pour l'évaluation
- Les comparaisons à effectuer
- Les données qui en sont issues
- L'interprétation des résultats obtenus

Chaque point sera détaillé à l'aide d'un tel tableau.

2.3.1. En pratique

Le tableau ci-dessous comporte la grille de référence utilisée pour chaque point de suspicion traité en évaluation préalable :

<table>
<thead>
<tr>
<th>Point de suspicion quant à la conformité</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description du point</td>
</tr>
<tr>
<td>Comparaison à mener</td>
</tr>
<tr>
<td>Textes et données de référence</td>
</tr>
<tr>
<td>Objet de comparaison</td>
</tr>
<tr>
<td>Interprétation des résultats</td>
</tr>
</tbody>
</table>

Note :
Les textes et données de référence fournis dans les tableaux ne sont que des extraits de la documentation disponible au moment de la rédaction du guide. Elles ne prétendent pas à l’exhaustivité. En particulier, des compléments d’information figurent dans la documentation originale mais n’ont pas été reproduits par souci de gain de place ; ils sont signalés par (…). Il convient dans tous les cas de se référer à la documentation en vigueur.

2.4. **Méthodes d'évaluation en situation**

L'analyse de tâche, la modélisation, l'analyse de verbalisation, l'exploitation de questionnaires peuvent être menées avec des outils radicalement différents. L'arsenal méthodologique de l'ergonomie présente un continuum allant du plus sommaire au plus complexe, avec des données plus ou moins détaillées et des interprétations plus ou moins approfondies.

La certification “facteurs humains” peut se satisfaire de méthodes relativement simples, même si elles mettent en œuvre des technologies complexes (simulateurs). C'est la raison pour laquelle nous allons décrire un corps de techniques adaptées à ce qu'est, aujourd'hui, le cadre de la certification.

Dans ces deux perspectives, les étapes sont équivalentes car la mise en œuvre de comportements humains doit être spécifiquement cadrée :

1. Définition des comportements attendus ou non attendus en fonction de connaissance du fonctionnement humain (modèles connus de ce fonctionnement).
2. Mise en œuvre des dispositions adaptées à l'observation de ces comportements (analyse de tâche, scénario, sujets).
3. Recueil des données comportementales.
4. Interprétation des résultats.

Compte tenu de l'évolution rapide de la maîtrise des méthodes et de la diffusion d'outils nouveaux et simple d'emploi, nous indiquerons les extensions imaginables dans la perspective d'une évolution méthodologique de la certification.

2.4.1. **Définition des comportements attendus - Modélisation**

Le modèle est une connaissance générique du fonctionnement humain. Il est un outil prédictif et descriptif. C'est dire qu'il peut être mis à contribution pour, a priori, pour anticiper et prédire des comportements possibles et, a posteriori, décrire et expliciter des comportements qui viennent d'être observés.

Le modèle est le produit d'une connaissance générique, académique, du fonctionnement humain et de l'expérience pratiques de personnes, pilotes ou spécialistes FH, disposant d'une bonne pratique de l'analyse des activités humaines en situation.

Plusieurs degrés de précision peuvent être retenus pour une modélisation. A minima, une modélisation peut comporter les concepts FH généraux du fonctionnement humain quant aux erreurs, à la perception et aux modalités de communication dans le cockpit. Il est ainsi possible de prédire les formes d'erreur susceptibles de survenir, les conflits de perception entre tête basse et tête haute et les difficultés de partage des données disponibles.

La modélisation est la source des comportements des pilotes utilisateurs qui peuvent être à la fois attendus et non attendus. Un système correctement conçu ne devrait pas engendrer de confusion dans son emploi. Mais un pilote peut, selon des causes propres, confondre des symboles. La confusion n'est pas un comportement attendu, mais elle demeure possible. La récupération de cette confusion par un pilote ou l'autre et la non-propagation des conséquences négatives deviennent alors des résultats attendus.
La modélisation permet d'articuler la connaissance du fonctionnement humain en situation avec le cadre des actions produit par l'analyse de la tâche et les scénarios qui constituent la mise en situation à des fins de validation. C'est pourquoi ces deux étapes méthodologiques, modélisation et analyse de la tâche, se complètent mutuellement et peuvent être réalisées simultanément.

2.4.2. Mise en œuvre des dispositions adaptées à l'observation des comportements.

Analyse de la tâche

L'analyse de la tâche vise à définir les contextes, les interactions, les états des systèmes, les actions de chaque membre de l'équipage compte tenu des pratiques reconnues et des règles en vigueur. Elle produit le cadre formel dans lequel s'inscrivent toutes les actions et comportements tant des systèmes que des personnes.

Une définition est proposée par l'AC/AMC 25.1302 :

A formal analytical method used to describe the nature and relationships of complex tasks involving a human operator.

L'analyse de tâche peut emprunter plusieurs formats :

Au plus simple, elle est une description formelle des actions à mener dans un cadre donné. Il s'agit donc d'une liste d'actions, d'états, avec des éléments de chronologie, de décision en vue de parvenir à des résultats parfaitement identifiés.

D'autres formes d'analyses de tâche, plus poussées, sont plus orientées vers la détermination des risques potentiellement associés à l'exécution des actions (APR, AMDEC...).

L'intérêt essentiel de l'analyse de tâche est d'identifier les contextes dans lesquels les éléments du modèle de fonctionnement retenu permettront la prédiction d'erreur, de difficultés de perception ou de décision.

Scénarios de mise en situation

Le croisement de la modélisation et de l'analyse de tâche a produit une liste de formes critiques d'activités et de contextes. Le scénario est la mise en forme opérationnelle d'une suite de séquences permettant de s'assurer des comportements que des pilotes peuvent manifester en situation. En d'autres termes un scénario a deux faces : un contexte de mise en situation dans lequel l'équipage agit de manière nominale et un ensemble de "pièges" dont il est attendu que le pilote ou l'équipage puisse ne pas y tomber ou en sortir aisément.

La certification du HUD nécessite d'utiliser des scénarios créant des mises en situations aussi diversifiées que possible en fonction des points de suspicion et donc des pièges qu'ils constituent.

Les scénarios sont locaux et dédiés à un aspect du fonctionnement du HUD dans un contexte donné ou globaux et mettant en œuvre l'ensemble des aspects du pilotage en plus du HUD.

Les scénarios locaux ou globaux comprennent des mises en situations normales et incidentelles et peuvent être construits :

- d'après le modèle préalable et ses hypothèses sur le comportement du pilote ;
à partir d'une connaissance des types de défaillances du système (il s’agit là d’utiliser les données liées directement à la sûreté de fonctionnement du HUD).

La cohérence des situations simulées pour les scénarios avec des usages réalistes de HUD est un point clé de l'évaluation. En particulier, le scénario doit mettre en jeu un équipage même si l'usage du HUD n’est possible qu’au poste PF, car les interactions ont elles aussi une grande importance. Toute mise en situation peu cohérente ou peu réaliste sera simplement "jouée" par le pilote ou l'équipage mais sans investissement ou souci de réalisme de leur part.

Choix des sujets : effectifs, profils et compétences

Deux populations complémentaires sont disponibles pour réaliser les évaluations avec mise en situation : les pilotes de lignes et les pilotes d'essais qu'ils soient statiques ou associés au développement chez le constructeur.

Les pilotes d'essais sont, par leur métier et leur expérience, plus attentifs aux impacts générés par les nouveaux dispositifs. Ils sont entraînés à l'observation et sont curieux de détecter toutes les possibilités du dispositif.

Les pilotes des compagnies ont un regard complémentaire sur la nouveauté. Ils disposent, d'une importante expérience du quotidien des vols et des contextes d'emploi. Par ailleurs ils observent le dispositif en s'interrogeant sur les gains (temporels notamment) et coûts (en terme de formation par exemple ou de modifications de leurs habitudes) que l'implantation du dispositif engendre pour eux.

Il est nécessaire de tester le nouveau HUD avec des représentants de ces deux populations de pilotes. Selon JAA et FAA (JAR HUS 901, FAA AC120-28D), la certification initiale d'un HUD pour des approches en catégorie 3 sur un nouvel appareil nécessite au moins 1000 atterrissages simulés et 100 atterrissages réels avec un effectif d'au moins 10 pilotes d'expériences variées.

Les rapports du FSB fournissent également des indications utiles concernant le nombre de sujets à retenir pour l’évaluation de chaque nouvel équipement.

Il est intéressant de prévoir plusieurs phases de tests avec des périodes d'assimilation intermédiaire entre chaque session pour une population constante de pilotes. Les stratégies d’adaptation qu'ils mettent en place après la phase de découverte peuvent ainsi être prises en compte. Les sujets peuvent alors être contrôlés à différents moments (étude longitudinale) de leur apprentissage du HUD et l’évaluation peut prendre en compte la variabilité des comportements grâce au nombre des sujets.

En pratique, il vaut mieux disposer tout à la fois d’un groupe constant de validation et d'ensemble, aussi nombreux que possible, d'utilisateurs en test "one-shot".

Quels que soient leur profil et leur suivi, ils doivent être observés tant au niveau individuel que collectif, de façon à recueillir des données prenant en compte la variabilité des stratégies selon la composition et les compétences de l’équipage. En effet, l’implantation d’un HUD ne modifie pas seulement les stratégies du pilote, mais celles de l’équipage tout entier.

Recueil de données comportementales

Deux grandes familles de données sont classiquement rencontrées dans la littérature scientifique : les données objectives constituées de mesures techniques ou physiologiques recueillies au cours
Projet de guide méthodologique pour l'évaluation facteurs humains des collimateurs tête haute

Les données objectives techniques les plus fréquemment rencontrées sont :
- les écarts aux paramètres de vol prescrits : trajectoire, altitude, vitesse.
- les temps de réalisation d'une manœuvre, de détection d'un élément critique, d'identification de panne
- le nombre d'échecs dans la réalisation de la tâche ou d'erreurs d'identification.

Les données objectives physiologiques sont citées pour mémoire car leur recueil et leur exploitation supposent des compétences élevées et spécialisées. Elles consistent en enregistrements de l’activité des yeux, du cœur, des muscles ou du cerveau.

Les données subjectives peuvent être issues notamment :
- de questionnaires
- d’entretiens semi-dirigés
- d’échelles de caractérisation de l’activité visant l’évaluation de la conscience de la situation (par exemple SA-SWORD) ou de la charge de travail (par exemple : Cooper-Harper, NASA-TLX…).

Il existe une vaste panoplie de données sélectionnées et combinées en fonction de l'objet de l'analyse et des possibilités offertes par le dispositif d'évaluation. L'association de ces deux catégories de données est évidemment préférable, mais chacune comporte également des difficultés de mise en œuvre dans le contexte de la certification.

Les données techniques objectives restent toujours directement issues des possibilités techniques du simulateur qui ne prévoient pas toujours de recueillir ce type de données. Leur facilité de collecte et leur disponibilité pour une analyse statistique, par exemple ne sont donc pas toujours avérées. Ces données se heurtent concrètement à un autre obstacle. Les effectifs de pilotes mis en situation ne sont pas toujours suffisants pour être l'objet d'analyses statistiques. Les données subjectives restent ainsi le principal recours pour réaliser l'évaluation.

Interprétation des résultats

L'interprétation des résultats est un des points-clés d'une validation FH. Pour autant, l'interprétation n'est pas aisée. Des critères simples de réussite et d'échec sont rarement disponibles dans le domaine FH ; à l'opposé, constater la survenue d'une erreur pour un pilote ne peut suffire à rejeter un matériel.

Les éléments de l'AMC 25.1302(d) éclairent utilement les résultats à interpréter.
En termes d'erreur humaine, les dispositifs doivent ne pas y contribuer, permettre leur détection et / ou leur récupération. Sinon les conséquences des erreurs non récupérées ne doivent être ni dangereuses ni catastrophiques.

Dans le cas du HUD, l'interprétation des résultats doit être mise en perspective du type d'usage du HUD.

Celui-ci n'est pas une interface de dialogue associée à une insertion de paramètres ; il permet le contrôle d'un processus de pilotage automatique ou fournit les informations de référence pour réaliser directement le pilotage :

- Dans le premier cas, nous sommes dans un contrôle de processus, ce qui signifie que le pilote doit garder une représentation adéquate et remise à jour afin de reprendre le pilotage en cas de défaillance des automatismes.
- Dans le second cas, le HUD est un système direct de pilotage fournissant les informations que le pilote exploite en temps réel pour agir sur sa trajectoire.

2.4.3. En pratique

Les 4 étapes évoquées ci-dessus seront menées selon le tableau type suivant utilisé pour chaque point de suspicion de type mise en situation :

<table>
<thead>
<tr>
<th>Point de suspicion</th>
<th>Description du point tel que produit par la pratique et les retours d'expérience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comportements attendus ou non</td>
<td>Les modèles disponibles permettent de spécifier des comportements considérés comme attendus ou non.</td>
</tr>
<tr>
<td>Textes et données de référence</td>
<td></td>
</tr>
<tr>
<td>Dispositions adaptées à l'observation</td>
<td></td>
</tr>
<tr>
<td>Recueil de données comportementales</td>
<td></td>
</tr>
<tr>
<td>Interprétation des résultats</td>
<td></td>
</tr>
</tbody>
</table>
3. Points de suspicion compatibles avec une évaluation préalable

Ce cadre commun rappelle les grandes caractéristiques qui permettent d'identifier tout HUD. En ce sens, leur revue constitue une sorte de "carte d'identité" pour l'approche initiale de la certification FH puisque chacun de ces points aura une valeur particulière pour un HUD donné.

Les trois premiers points de suspicion sont réputés maîtrisés dès les étapes initiales de la conception. Ils ne sont que d'une validation générale, lors des mise en situation, par la vérification de l'adéquation des dispositions retenues par le constructeur :
- Collimation
- Champ de vision et boîte à œil
- Caractéristiques générales de la symbologie

Les points de suspicion suivant sont, par contre, à évaluer préalablement "sur papier" :
- Cohérence des sources
- Affichage des pannes
- Positionnement du pilote
- Réglage de la luminosité
3.1. Collimation

Point de suspicion quant à la conformité

L'effet produit par le dispositif optique du HUD (combiner) : les symboles se forment à une distance telle qu'ils apparaissent à l'infini, ce qui réduit considérablement le besoin d'accommodation de l'œil pour passer de la vision du monde extérieur à celle des symboles affichés sur le HUD. Cette caractéristique est aujourd'hui reconnue comme indispensable pour les HUD. Notons l'apparition sur les avions militaires d'affichages collimatés en tête basse ou moyenne.

La collimation satisfait au fonctionnement physiologique de l'œil ; en revanche, elle ne garantit pas forcément l'intégration écologique des symboles dans la scène extérieure tridimensionnelle. En effet, la vision de la profondeur repose naturellement sur les propriétés des éléments visuels que ne présentent pas les symboles : luminosité, situation dans le plan, profondeur, taille, désaturation, flou, grisé. Cette compétition entre les processus physiologiques et cognitifs peut conduire à ce que les symboles des HUD, bien que collimatés à un infini optique soient perçus sur un plan bien plus proche par le pilote.

Comparaison à mener

| Textes et données de référence | SAE AS 8055 :
When applied to a HUD system, optical infinity refers to a condition when the image distance to the virtual display is such that the horizontal parallax for 95% of all possible look angles and head position within the HUD eye box is less than 3.5 mrad. This represent an optical image distance of at least 18 m.

SAE ARP 5288 : 11.15 :
The symbols should be presented as a virtual image focused at optical infinity, i.e. located at such a distance that rays of light appear parallel. |

| Objet de comparaison | Vérifier que les données proposées par le candidat sont compatibles avec les données de référence. Nous sommes ici dans des dimensions purement optiques n'impliquant pas les aspects comportementaux des usagers potentiels |

| Interprétation des résultats | L'interprétation des résultats porte sur deux aspects :
1) Le point clé est la méthodologie employée pour obtenir les données proposées. Avant toute tentative d'interprétation, cette approche méthodologique permet de s'assurer du degré de validité des données présentées. Vaudra ici l'engagement de précision des mesures proposées par le constructeur de la partie optique.
2) Cette validité étant appréciée, l'interprétation effective des données porte sur le degré d'adéquation du dispositif technique proposé par le candidat aux textes de référence. |

Des deux textes proposés, le SAE ARP 5288 est le plus intéressant car il pointe une particularité de la collimation. L'important est d'avoir, optiquement, une profondeur de champ uniforme entre l'infini réel et l'infini optique à 18 mètres. Le HUD n'est pas la seule cause de déformation optique pour le pilote. Le pare brise, ou la verrière, se comporte également comme une lentille susceptible de déformer la vision humaine. La collimation effective est donc celle cumulant les effets du HUD et ceux du pare brise ou de la verrière.
Le fabricant de la verrière, ou du pare brise, est à même de fournir des données sur la déformation optique du produit.

Une collimation globale située entre 18 et 30 m sera acceptable.
3.2. Champ de vision et boîte à œil (eye box)

Point de suspicion quant à la conformité

Le champ de vision est le champ angulaire couvert par le collimateur, spécifié en degrés, verticalement et horizontalement. On distingue généralement deux champs :
- le champ de vision total (*total field of view* - *FOV*) qui désigne le champ maximal visible en déplaçant éventuellement la tête.
- le champ de vision instantané qui désigne le champ visible lorsque la tête est en position fixe (la position normale de pilotage avec le HUD)

La réglementation requiert que la symbologie HUD soit visible dès lors que les yeux du pilote sont situés dans un parallélogramme appelé boîte à œil. Celle-ci doit être de dimensions suffisantes pour permettre l'utilisation dans les conditions normales de pilotage sans fatigue excessive. Cette boîte fixe la position du corps et donc l'espace des accès au sein du cockpit lors de l'usage du HUD. L'installation doit être adaptée à la diversité des morphologies, en particulier à des pilotes de tailles diverses (voir également positionnement du pilote).

Comparaison à mener

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>Dimensions de la boîte à œil</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 25.1321(a) :</td>
<td>requires that each flight instrument for use by any pilot be plainly visible at that pilot's station, with minimum practicable deviation from the normal position and forward line of vision.</td>
</tr>
<tr>
<td>SAE AS 8055, SAE ARP 5288 5.2 :</td>
<td>The design of the HUD installation should provide adequate display fields-of-view in order for the HUD to function correctly in all anticipated flight attitudes, aircraft configurations, or environmental conditions such as crosswinds for which it is approved. Limitations should be clearly specified in the AFM if the HUD can not be used throughout the full aircraft flight envelope.</td>
</tr>
<tr>
<td></td>
<td>The FOV characteristics shall be specified by the HUD manufacturer and shall be consistent with the intended function of the HUD. The amount of vertical and horizontal head movement needed to see the total FOV should not cause excessive pilot workload or discomfort.</td>
</tr>
<tr>
<td></td>
<td>The HUD Eye Box shall wholly contain a Cockpit Head Motion Box, defined as a three dimensional spatial volume, geometrically centered at the cockpit Design Eye Point, which minimum size is as follows :</td>
</tr>
<tr>
<td></td>
<td>Lateral: 76.2 mm (3.0 in.)</td>
</tr>
<tr>
<td></td>
<td>Vertical: 50.8 mm (2.0 in.)</td>
</tr>
<tr>
<td></td>
<td>Longitudinal: 101.6 mm (4.0 in.)</td>
</tr>
<tr>
<td>SAE ARP 5288 7.1.1 :</td>
<td>To support effective information transfer, the "present values" of attitude, airspeed/mach, barometric altitude, and heading should be located within the pilot's central vision when looking through the HUD. For the purposes of this document, this is a circular region with a 15° radius cone about the HUD field of view established by the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>In keeping with the HUD visibility criteria detailed in 5.2.6, critical information for each HUD application and phase of flight must be viewable from any point within the Cockpit Head Motion Box.</td>
</tr>
</tbody>
</table>

Objet de comparaison

Vérifier que les données proposées par le candidat sont compatibles avec les données de référence. Les dimensions purement optiques (dimension de la boîte à œil) se conjuguent ici avec la lecture des données affichées sur le HUD.

Interprétation des résultats

Les textes de référence exposent l'ensemble des points à traiter :

- Dimensions de la boîte à œil. Les données de référence sont des
minima.
- Lisibilité des symboles dans les différentes configurations d'affichage.
 Il importe de vérifier les valeurs effectives de la boîte à œil en fonction
 de l'espace virtuel qui doit pouvoir être parcouru selon la dynamique
 des symboles (vent de travers, attitudes inusuelles…)
Les mouvements de tête doivent pouvoir être anticipé en ce qu'ils seraient
nécessaires pour réaliser ce parcours pour les zones périphériques de
l'espace virtuel de lisibilité du HUD.

Une "carte des lisibilités" dans la boîte à œil permettrait de vérifier les
données manquantes susceptibles de limiter l'exploitation des données
affichées sur le HUD par un pilote en situation.
3.3. Caractéristiques générales de la symbologie

Point de suspicion quant à la conformité

Les symbologies des collimateurs tête haute modernes sont construites autour d’un ensemble de symboles analogiques conformes qui, complétés des affichages numériques de l’altitude et de la vitesse, fournissent l’ensemble des informations nécessaires au pilotage basique. Ces symboles ont été l’objet de nombreuses études, leur présentation est aujourd’hui quasiment stabilisée. La constitution de la symbologie dépend essentiellement du concept d’emploi et des types d’opération visés. Pour une description de symboles types constitutifs d’une symbologie, on pourra se référer à l’Annexe 4.

La conformité des symboles est la présentation géométriquement et directement transposable au monde extérieur. Ainsi :
- un horizon conforme se superpose à l’horizon réel (à la différence du décalage d’altitude) ;
- un degré sur une échelle conforme de cap ou de tângage correspondent à un degré dans la réalité ;
- un vecteur vitesse inertiel conforme indique le point vers lequel l’avion se dirige réellement ;
- une piste synthétique conforme se superpose directement sur la piste réelle (à l’imprécision de la navigation, des bases de données et du paramétrage près).

Cette caractéristique est aujourd’hui reconnue comme une spécificité et un point fort des HUD, pour les informations qui s’y prêtent et dans les situations courantes. Ce principe de conformité peut ne pas être appliqué pour répondre à différentes situations particulières :
- fort vent de travers ou grande incidence : la présentation de symboles normalement conformes mais sortant des limites de champ du HUD : le déplacement de ces symboles peut être volontairement limité au champ du HUD (on dit que ces symboles sont “cagés”), mais cette limitation doit être signalée par un moyen approprié (par exemple représentation en pointillés) ;
- grande assiette (décollage, remise de gaz…) : une compression d’échelle de tângage peut être appliquée afin de conserver l’horizon dans le champ du HUD.
- attitudes inusuelles : la perception et la récupération de ces situations peut être facilitée par une symbologie particulière, comportant notamment une échelle de tângage compressée, donc non conforme.

La redondance des caractéristiques d’un symbole : les textes recommandent l’utilisation systématique de caractéristiques redondantes dans la constitution de symboles dont la séparation est importante : dans le cas des HUD monochromes, afin de pallier à l’absence de couleurs, le principe de redondance est appliqué aux caractéristiques de forme, taille et positionnement ; des solutions alternatives ont également été développées (symboles clignotants, pointillés, encadrés…).

La pertinence des solutions retenues pour présenter en 2D des informations de nature 3D est également à considérer, leur caractère intuitif n’étant pas forcément acquis pour l’ensemble des utilisateurs (eg : capture d’ILS sur écarts bruts, indication de tendance de vitesse).

La standardisation de la symbologie est préconisée ; en particulier les textes de la SAE contribuent à cet effort de standardisation ; ils constituent un état de l’art labellisé (“recognition as an American National Standard”). Cette standardisation présente l’inconvénient de brider l’innovation.

Comparaison à mener
Textes et données de référence

CS/AMC 25.1302 (a) :
… information necessary to accomplish the tasks associated with the intended function must be provided…

CS 25.1302 7.7.2 :
(…) promote consistency rather than rigid standardisation.

CS 25.1303 Flight and navigation instruments.

(b) The following flight and navigation instruments must be installed at each pilot station:
(1) An airspeed indicator. If airspeed limitations vary with altitude, the indicator must have a maximum allowable airspeed indicator showing the variation of VMO with altitude.
(2) An altimeter (sensitive).
(3) A rate-of-climb indicator (vertical speed).
(4) A gyroscopic rate of turn indicator combined with an integral slip-skid indicator (turn-and-bank indicator) except that only a slipskid indicator is required on aeroplanes with a third attitude instrument system usable through flight attitudes of 360° of pitch and roll. (…)

AMC 25.1303(b)(5) Attitude displays

1. For turbo-jet aeroplanes each display should be usable over the full range of 360° in pitch and in roll. For propeller-driven aeroplanes the pitch range may be reduced to ± 75° provided that no misleading indication is given when the limiting attitude is exceeded.
(…)

1.3 The display should take the form of an artificial horizon line, which moves relative to a fixed reference aeroplane symbol so as to indicate the position of the true horizon.

NOTES:
1 It is acceptable for the fixed reference aeroplane symbol to be positioned so that it is aligned with the horizon line during cruising flight.
2 If a variable index is provided in addition to the fixed aeroplane symbol it should be so designed that it will not introduce any risk of misinterpretation of the display.
3 There should be no means accessible to the flight crew of adjusting the relationship between the horizon line and the reference aeroplane symbol.
4 The artificial horizon line should move in roll so as to remain parallel to the true horizon, i.e. when the aeroplane rolls through an angle of 30° the artificial horizon line should also rotate through 30° relative to the fixed index.
5 The artificial horizon line should remain in view over a range of pitch attitudes sufficient to cover all normal operation of the aeroplane plus a margin of not less than 2° in either direction. Additional ‘ghost’ horizon lines should be provided parallel to the main horizon line so that beyond this range at least one such line is in view at an attitude with the range of the display.

1.7 The pitch attitude scale should be sensibly linear while the main horizontal line is in view, but may become non-linear beyond this range.
All the attitude displays in the aeroplane should have a similar presentation so as to prevent any risk of confusion in transferring attention from one display to another.
1.9 Sufficient pitch and bank angle graduations and markings should be provided to allow an acceptably accurate reading of attitude and to minimise the possibility of confusion at extreme attitudes.
1.10 A bank angle index and scale should be provided. The index may be on the fixed or moving part of the display.
1.11 The ‘earth’ and ‘sky’ areas of the display should be of contrasting colours or shades. The distinction should not be lost at any pitch or roll angle.
1.12 Any additional information (e.g. flight director commands) displayed on an attitude display should not obscure or significantly degrade the attitude information.
1.13 The display should be clearly visible under all conditions of daylight and artificial lighting.
1.14 Words that may be ambiguous (e.g. ‘climb’, ‘dive’, ‘push’, ‘pull’) should not be used.
(…)

CS 25.1321 Arrangement and visibility

(b) The flight instruments required by CS 25.1303 must be grouped on the instrument panel and centred as nearly as practicable about the vertical plane of the pilot’s forward vision. In addition –
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>The instrument that most effectively indicates attitude must be on the panel in the top centre position;</td>
</tr>
<tr>
<td>(2)</td>
<td>The instrument that most effectively indicates airspeed must be adjacent to and directly to the left of the instrument in the top centre position;</td>
</tr>
<tr>
<td>(3)</td>
<td>The instrument that most effectively indicates altitude must be adjacent to and directly to the right of the instrument in the top centre position; and</td>
</tr>
<tr>
<td>(4)</td>
<td>The instrument that most effectively indicates direction of flight must be adjacent to and directly below the instrument in the top centre position.</td>
</tr>
<tr>
<td>AMC 25-11 7a : basic T, 7d : PFD, 7e : attitude, 7f : digital, analogue and combinations.</td>
<td>SAE ARP 5288 3.3 (PFD)</td>
</tr>
<tr>
<td>The set of informational components displayed on a HUD used as a PFD should include, as a minimum, the flight references specified in FAR/CS §25.1321. Other components required for display on a HUD are dependent on the other phases of flight and flight operations supported by the HUD. These additional components are mainly related to the display of command guidance or the display of aircraft situational information. For example, if the HUD is to be used to monitor the autopilot, the following additional information should be displayed:</td>
<td></td>
</tr>
<tr>
<td>a) Situation information based on independent raw data;</td>
<td></td>
</tr>
<tr>
<td>b) Autopilot operating mode if autopilot reversion is necessary;</td>
<td></td>
</tr>
<tr>
<td>c) Autopilot disconnect warning.</td>
<td></td>
</tr>
<tr>
<td>Additional information should also be displayed if required to perform aircraft maneuvers during phases of flight which the HUD is approved. These may include:</td>
<td></td>
</tr>
<tr>
<td>a) Flight path indication;</td>
<td></td>
</tr>
<tr>
<td>b) Target airspeed references and speed limit indications;</td>
<td></td>
</tr>
<tr>
<td>c) Target altitude references and altitude awareness (e.g., DH, MDA) indications;</td>
<td></td>
</tr>
<tr>
<td>d) Heading or course references.</td>
<td></td>
</tr>
</tbody>
</table>

Objet de comparaison

La comparaison doit permettre de statuer sur le degré d'adéquation du dispositif technique proposé aux textes de référence. Cette adéquation porte ici tout autant sur l'existence du symbole (conformité au monde ; redondance d'information), que sur le symbole lui-même (pertinence et standardisation).

Interprétation des résultats

L'interprétation est ici assez aisée car elle concerne l'existence même du symbole, leur disposition, les règles de superposition… Le résultat de la confrontation entre proposition du candidat et texte doit être éclairant à ce propos. Soit le symbole est associé à un concept déjà employé, il conviendra de privilégier des symboles préexistants pour tirer parti des effets d'apprentissage ; soit le concept est nouveau, le symbole devra alors pouvoir être aisément discriminé des formes et contours déjà employés.
3.4. Cohérence des sources de données du HUD

Point de suspicion quant à la conformité

La cohérence des sources de données nécessaires aux affichages sur le HUD est un point clé de la fiabilité de celui-ci.

Elle prend deux aspects :
- la cohérence des sources propres à un HUD,
- la séparation des sources pour les deux HUD si les deux postes en sont équipés. Les sources des données utilisées pour l'affichage sur les deux HUD doivent être indépendantes de manière à permettre une réelle vérification au sein de l'équipage.

Si elle ne le sont pas le fait doit être signalé à l'équipage.

Le seuil de comparaison qui permet de vérifier la cohérence de sources indépendantes doit également être précisé et évalué.

Comparaison à mener

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>CS 25.1333 Instrument systems (a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) For systems that operate the instruments required by CS 25.1303 (b), which are located at each pilot's station, means must be provided to connect the required instruments at the first pilot's station to operating systems, which are independent of the operating systems at other flight crew stations, or other equipment.</td>
<td></td>
</tr>
<tr>
<td>AMC 25-11 8.c (following SAE ARP 5288 9.2) :</td>
<td></td>
</tr>
<tr>
<td>(1) Independent attitude, heading, and air data sources are required for the pilot and co-pilot primary displays. (...). If sources to the electronic displays can be switched in such a fashion that the flight crew becomes vulnerable to hazardously misleading information on both sides of the cockpit as a result of a common failure, then this switching configuration should be accomplished by a cautionary alert in clear view of both pilots.</td>
<td></td>
</tr>
<tr>
<td>(3) If a crew member can select from multiple, similar, navigation sources, such as multiple VORs or multiple long-range navigation systems, then the display of the selected source data into a CDI type presentation should be annunciated (i.e. VOR 1, INS 2, etc.). The annunciation should be implemented in such a fashion that a non-normal source selection is immediately apparent. In addition, when both crewmembers have selected the same navigation source, this condition should be annunciated; for example, the co-pilot has offside VOR selected, with VOR 1 annunciated in amber/yellow in the co-pilot's electronic display. Exceptions to this non-normal annunciation requirement can be constructed. If the similar navigation sources are two navigation computers that ensure position and stored route identically through a cross-talk channel, electronic display of normal or non-normal source annunciation would not be required provided a system disparity was annunciated. In the case where source annunciations are not provided on the electronic displays, such source annunciations should be readily obvious to the crew.</td>
<td></td>
</tr>
<tr>
<td>(4) The increased flexibility offered by modern avionics systems may cause flight crews to be more susceptible to selecting an inappropriate navigation source during certain phases of flight, such as approach. Since electronic displays may incorporate more complex switching, compensating means should be provided to ensure that the proper navigation source has been selected. In order to reduce the potential for the pilot selecting a non approach qualified navigation source for an instrument approach, unambiguous annunciation of the selected navigation source shall be provided. (…)</td>
<td></td>
</tr>
<tr>
<td>SAE ARP 5288 8.5 :</td>
<td></td>
</tr>
<tr>
<td>The HUD and HDD formats and data sources need to be compatible to ensure that the same information presented on both displays have the same intended meaning. (…)</td>
<td></td>
</tr>
<tr>
<td>f) Information source should be consistent.</td>
<td></td>
</tr>
</tbody>
</table>

Objet de comparaison

La confrontation entre les données du candidat et les textes de référence
relève des étapes initiales d'une certification puisque les éléments concernés sont techniques.

| **Interprétation des résultats** | Les textes ci-dessus sont explicites et détaillés à ce sujet ; ils conduisent à dresser un organigramme des données, de leur source et traitement et de leurs affichages afin d'identifier des combinaisons qui pourraient demeurer telles que le pilotage ou l'équipage ne puisse analyser des données, en vue d'un lever de doute, sans savoir si leurs sources sont similaires ou différentes. |
3.5. Affichage des pannes

Point de suspicion quant à la conformité

Il convient de distinguer l’affichage des pannes avion avec celui des pannes propres au HUD. La philosophie dépend de la phase de vol.

L’affichage des pannes avion peut être requis par la réglementation, selon le concept d’emploi du HUD (instrument principal ou non). Le risque de surcharge visuelle ou informative est à considérer, ainsi que le risque de défaut de détection si l’affichage n’est pas adapté.

Les pannes propres au HUD font l’objet de règles spécifiques : absence d’affichage des informations non valides, ou leur signalisation en tant que telles... Le risque d’affichage de symboles figés apparaît particulièrement insidieux.

Des solutions spécifiques au HUD (monochrome) doivent être utilisées pour différencier le type d’alerte en l’absence de choix de couleur.

Comparaison à mener

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>CS 25.1309</th>
<th>AMC 25-11 8d</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) Information concerning unsafe system operating conditions must be provided to the crew to enable them to take appropriate corrective action. A warning indication must be provided if immediate corrective action is required. Systems and controls, including indications and annunciations must be designed to minimize crew errors, which could create additional hazards.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In the case of a detected failure of any parameter, the associated invalid indications should be removed and only the flag should be displayed. It is recommended that differentiation be made between the failure of a parameter and a ‘no computed data’ parameter, e.g. non-reception of radio navigation data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMC 25-11 10 : integrated warning, caution and advisory displays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. A ‘warning’ should be generated when immediate recognition and corrective or compensatory action is required; the associated colour is red. A ‘caution’ should be generated when immediate crew awareness is required and subsequent crew action will be required; the associated colour is amber/yellow. An ‘advisory’ should be generated when crew awareness is required and subsequent crew action may be required; the associated colour should be unique, preferably not amber/yellow. (…)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Caution and warning displays are necessarily related to aural alerts and master caution and warning attention-getting devices. (…)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE ARP 5288 9.4 : HUD alerting issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUDs, when used as PFDs, should provide the equivalent alerting functionality as current HDD PFDs. Warnings that require continued crew attention on the PFD, should be presented on the HUD, e.g., TCAS, Windshear, and Ground Proximity Warning annunciations. If master alerting indications are not provided within the peripheral field of view of the pilot while using the HUD, the HUD shall provide annunciations that inform the pilot of caution and/or warning conditions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To the extent that current HUDs are single color devices, cautions and warnings should be emphasized with the appropriate use of attention-getting properties such as flashing, outline boxes, brightness, size, and/or location.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS/AMC 25.1302 7.5.5 : 5 : Displays for Automated Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The applicant should consider the following aspects of automated system design: (…)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. If the automated system nears its operational authority or is operating abnormally for the conditions, or is unable to perform at the selected level, it will inform the flight crew, as appropriate for the task:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Objet de comparaison** | La confrontation consiste ici à vérifier quelles sont les modalités formellement proposées par le candidat pour rendre effectif ces dispositifs d'information quant aux divers degrés d'alarme, de panne ou aux limites de performance des systèmes. Il est à noter que le domaine des pannes est large puisqu'il est aussi bien question :
- des pannes liées aux fonctionnement de l'avion
- des limites de domaine des automatismes
- des contextes dangereux pour le vol
- des codages d'affichage sur le HUD,
- de l'interaction avec les autres annonces de panne auditives ou visuelles dans le cockpit |
| **Interprétation des résultats** | Au stade de la confrontation "papier" entre les propositions du candidat et les attentes ou recommandations, l'interprétation porte sur la description des réponses et la prise en compte des ambiguïtés par le candidat. Ces dispositions seront validées plus finement lors de la phase dynamique. |
3.6. Positionnement du pilote

Point de suspicion

L'utilisation du HUD impose l'alignement du champ visuel virtuel avec la boîte à œil, l'exploitation des données qui y sont lisibles, la facilité d'accès aux commandes ou autres affichages nécessaires en toutes circonstances.

Cette analyse peut être réalisée de deux manières complémentaires :

- Les repères d'alignement, les possibilités de réglage du siège doivent être adaptés à la variabilité de la morphologie des pilotes. La position à adopter par chacun ne doit pas être trop contraignante ni générer de fatigue excessive. La bonne adéquation aux textes est une vérification préalable.

- Ceci sera aussi évalué en situation en vérifiant que l'usage du HUD n'occasionne pas de manifestations de fatigue ou d'inconfort durant les opérations. Évidemment, la gamme de temps à considérer est importante puisqu'il peut être question d'un usage bref lors du contrôle d'une approche jusqu'à des durées de plusieurs heures dans le cas d'un HUD affichant des données de vol essentielles pour un vol long à proximité du sol.

Comparaison à mener

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 25.1302 : (b) The flight deck controls and information intended for the flight crew use must: (...) (2) Be accessible and usable by the flight crew in a manner consistent with the urgency, frequency, and duration of their tasks, and..</td>
<td></td>
</tr>
<tr>
<td>CS 25.1321 (a) (a) Each flight, navigation, and powerplant instrument for use by any pilot must be plainly visible to him from his station with the minimum practicable deviation from his normal position and line of vision when he is looking forward along the flight path.</td>
<td></td>
</tr>
<tr>
<td>SAE ARP 5288 (referring to CS 25) : 5.2.4 : §25.773 (d) requires that fixed markers or other guides must be installed at each pilot station to enable the pilots to position themselves in their seats [at the Design Eye Position (DEP)] for an optimum combination of outside visibility and instrument scan. The HUD installation is not required to provide any additional markers or guides. §25.777 requires that cockpits must accommodate pilots from 158 cm to 191 cm tall, seated with seat belts fastened and positioned at the DEP. The requirements of §25.1321, 25.773 and 25.777 apply to the HUD installation, and the HUD installation should not diminish or impair compliance of the cockpit to these requirements. The visibility of the critical flight information displayed on the HUD is paramount to the HUD’s intended function. The HUD installation must provide continuous visibility of this critical information from the cockpit DEP. 5.2.6 : The field of view performance of the HUD and its installation in the cockpit needs to be tolerant of a certain amount of natural, involuntary displacements of the pilot's head from the DEP, to maintain continuous visibility of the critical flight information. Therefore, the critical flight information displayed on the HUD must be visible from any point within the Cockpit Head Motion Box. The design and installation of the HUD should not place physiologically burdensome fatigue, visual stress, or limitations on head position.</td>
<td></td>
</tr>
</tbody>
</table>

| Objet de comparaison | La comparaison doit concerner la position de la boîte à œil, la visibilité vers l'extérieur et la position du siège selon la représentation statistique des tailles et dimensions d'une population de référence. Celle-ci se traduit par une gaussienne des tailles et morphologies compatibles avec le dispositif |
technique proposé. Il en est de même avec les attitudes extrêmes de l'aéronef qui pourront limiter la visibilité du monde extérieur à travers le HUD par la boîte à œil en fonction de la taille de la personne et des ajustements permis par les sièges. Les dimensions de cette population de référence doivent également être confrontées en termes d'accessibilité à l'ensemble des commandes susceptibles d'être utilisées lors de l'usage du HUD.

| Interprétation des résultats | Une "carte d'usage en situation du HUD" résulte de cette confrontation entre différentes grandeurs et espaces. Elle matérialise les zones d'accès pour une dispersion de tailles et dimensions d'une population de pilotes en position d'utiliser à la fois le HUD et les commandes de cet appareil nécessaires lors du vol avec HUD. |
3.7. Réglage de la luminosité

Point de suspicion

La vérification des possibilités de réglage de la luminosité doit aborder toutes les circonstances prévisibles d'utilisation du HUD : jour avec différentes conditions d'éclairement, soleil de face, nuit...

En particulier, la luminosité de la symbologie doit pouvoir être réglée à un niveau suffisamment faible pour éviter le risque de masquage d'éléments extérieurs.

Les normes techniques actuelles de définition des niveaux de luminosité apportent des données suffisantes tant qu'il est question de symbologies monochromes vertes pour lesquelles les phosphores disponibles ont un fort rendement lumineux. Il n'en va pas de même avec des symbologies polychromes pour lesquelles les phosphores sont diversement performants et les normes en cours d'élaboration. Les éléments ci-dessous concernent donc essentiellement des systèmes polychromes.

<table>
<thead>
<tr>
<th>Comparaison à mener</th>
</tr>
</thead>
<tbody>
<tr>
<td>Textes et données de référence</td>
</tr>
<tr>
<td>AMC 25.1302 7.7.4 Flight Deck Environment</td>
</tr>
<tr>
<td>It should also be recognized that the flight deck system is influenced by the physical characteristics of the aircraft into which a system is integrated, as well as the environmental characteristics. Thus, the system is subject to influences in and on the flight deck such as turbulence, noise, ambient light, smoke, and vibrations (such as those that may be due to ice or fan blade loss). Design of the system should recognize how such influences may affect usability, workload, and crew task performance. Turbulence and ambient light, for example, may affect the readability of a display. (…)</td>
</tr>
<tr>
<td>CS 25.1381 Instrument lights</td>
</tr>
<tr>
<td>(b) Unless undimmed instrument lights are satisfactory under each expected flight condition, there must be a means to control the intensity of illumination.*</td>
</tr>
<tr>
<td>AMC 25-11</td>
</tr>
<tr>
<td>6.b Chromaticity and Luminance</td>
</tr>
<tr>
<td>(1) Readability of the displays should be satisfactory in all operating and environmental lighting conditions expected in service. Four lighting conditions known to be critical for testing are –</td>
</tr>
<tr>
<td>(i) Direct sunlight on the display through a side cockpit window (usually short term with conventional window arrangements).</td>
</tr>
<tr>
<td>(ii) Sunlight through a front window illuminating white shirts, which are reflected in the CRT (a function for the CRT front plate filter).</td>
</tr>
<tr>
<td>(iii) Sun above the forward horizon and above a cloud deck in the pilot’s eyes (usually a prolonged situation and the most critical of these four).</td>
</tr>
<tr>
<td>(iv) Night and/or dark environment. Brightness should be controllable to a dim enough setting such that outside vision is not impaired while maintaining an acceptable presentation.</td>
</tr>
<tr>
<td>(2) When displays are evaluated in these critical lighting situations, the display should be adjusted to a brightness level representative of that expected at the end of the CRT's normal useful life (5000 to 20000 hours), or adjusted to a brightness level selected by the manufacturer as the minimum acceptable output and measurable by some readily accomplished maintenance tests. If the former method is used, adequate evaluations should be performed to ensure that the expected end of life brightness levels are met. Some manufacturers have found, and the Agency has accepted, that 50% of original brightness level is a realistic end of life value. If the latter method is used, procedures should be established to require periodic inspections, and these limits should then become part of the service life limits of the aeroplane system. (…)</td>
</tr>
<tr>
<td>(4) Electronic display systems should meet the luminance (photometric brightness) levels of SAE Document ARP 1874. A system designed to meet these standards should be readily visible in all the lighting conditions listed in paragraphs 6.b. (1) and 6.b. (2), and should not require specific flight testing for luminance if the system has been previously installed in</td>
</tr>
</tbody>
</table>
| *sous-direction de la sécurité et de l’espace aérien*
another aeroplane with similar cockpit window arrangements. If the display evaluation team feels that some attributes are marginal under extreme lighting conditions, the following guidelines may be used:

(i) The symbols that convey quick-glance attitude and flight path control information (e.g., horizon line, pitch scale, fixed aeroplane symbol and/or flight path symbol, sky pointer and bank indices, flight director bars) should each have adequate brightness contrast with its respective background to allow it to be easily and clearly discernible.

(ii) The combination of colour and brightness of any subset of these symbols, which may, due to relative motion of a dynamic display, move adjacent to each other and use colour as an aid for symbol separation (e.g. flight director bars and fixed aeroplane symbol), should render each symbol distinctly identifiable in the worst case juxtaposition.

(iii) Flags and annunciations that may relate to events of a time critical nature (including warnings and cautions defined in paragraph 10. of this AMC as well as flight control system annunciations of mode reversions) should have a sufficient contrast with their background and immediate environment to achieve an adequate level of attensity (attention getting properties). (…)

(iv) Analogue scale displays (heading, air data, engine data, CDIs, or course lines) should each have adequate brightness with its respective background to allow it to be easily and clearly discernible. (…). Symbols used as targets and present value pointers in juxtaposition to a scale should remain distinct. If colour is required to convey the meaning of similar shaped targets or indices, the colour should remain easily discernible.

(v) Flags and annunciations should still be visible at low display brightness when the display is adjusted to the lowest usable level for flight with normal symbology (day or night).

(vi) Raster fields conveying information such as weather radar displays should allow the raster to be independently adjustable in luminance from overlaid stroke symbology. The range of luminance control should allow detection of colour difference between adjacent small raster areas no larger than 5 milliradians in principal dimension; while at this setting, overlying map symbology, if present, should be discernible.

(5) Automatic brightness adjustment systems can be employed to decrease pilot workload and increase tube lifetime. Operation of these systems should be satisfactory over a wide range of ambient light conditions including the extreme cases of a forward low sun and a quartering rearward sun shining directly on the display. A measure of manual adjustment should be retained to provide for normal and abnormal operating differences. In the past it has been found that sensor location and field of view may as significant as the tube brightness dynamics. Glareshield geometry and window location should be considered in the evaluation. See also SAE ARP 5288 6.2 and SAE ARP 8055 4.3 for more details.

Objet de comparaison

L’émission lumineuse du HUD doit être confrontée à la fois aux circonstance du vol de nuit, donc en environnement lumineux à basse luminance, et aux circonstances du vol en haute altitude, donc en environnement lumineux de très haute luminance. Sur le continuum reliant ces deux contextes extrêmes, deux grandeurs doivent être aussi constances que possible :
- la qualité chromatique du HUD doit être maintenue afin de permettre une exploitation correcte des codages lumineux des informations
- le contraste avec entre la symbologie et le fond perçu qui doit être suffisant pour assurer une bonne lisibilité en conditions extrêmes.

Interprétation des résultats

Deux courbes doivent exprimer :
La constance chromatique de la symbologie émise du moins au plus lumineux. La longueur d’onde émise pour les couleurs de référence doit être montrée comme stable par le candidat à différentes valeurs type de luminosité de l’environnement : basse, moyenne, haute, très haute luminosité
Les valeurs de contraste doivent être proposées pour les mêmes niveaux lumineux.
4. Points de suspicion requérant une évaluation en situation

Les points du fonctionnement des HUD à analyser sont nombreux. Au-delà du cadre général qui vient d’être décrit, les expériences de certifications antérieures et la littérature scientifique mettent l’accent sur certains points sensibles du HUD qu’il est nécessaire d’étudier. Nous les qualifions de "Points de suspicion".

Les points de suspicion retenus ci-dessous constituent une synthèse des divers aspects évoqués. Ils sont ordonnés selon un continuum qui va des aspects les plus physiologiques aux plus cognitifs :

1. Interprétation des symboles
2. Compatibilité avec les affichages en tête basse
3. Logique et affichage des modes. Confusion de mode
4. Clutter
5. Performance du pilotage sous HUD
6. Utilisation pour le pilotage des manœuvres rapides
7. Utilisation pour le pilotage des transitions
8. Utilisation aux attitudes inusuelles et représentation spatiale du pilote
9. Charge de travail induite par le HUD
10. Partage des informations au sein de l’équipage, interaction dans un cockpit HUD
11. Intégration du HUD vis-à-vis des opérations
12. HUD avec imagerie (EVS)
13. HUD dual

Les deux derniers points relatifs à de nouveaux concepts, pour lesquels les expériences et les méthodologies d’évaluation sont encore en cours d’élaboration, sont abordés de façon moins détaillés, n’ayant pu faire l’objet d’analyse détaillée auprès des utilisateurs, comme cela a pu être réalisé lors de la première tranche de cette étude pour les autres points.
4.1. Interprétation des symboles

Point de suspicion
La recommandation, pour une interprétation correcte des symboles, est la suivante :
"Display elements and symbology (...) should be natural, intuitive, and not dependent on training or adaptation for correct interpretation." (AC/AMC 25-11, 7.)
Cette recommandation constitue un idéal, mais il faut être conscient de ce que les symboles HUD ne sont naturels et intuitifs que pour des pilotes suffisamment entraînés à l'usage de symbologies électroniques. Fort justement, le texte SAE ARP 5288 pose la facilité d'assimilation comme premier critère dont il faut s'assurer (Reasonable training times and learning curves).
Le problème est sensible notamment avec les représentations 2D dans le plan vertical du HUD d'informations de natures diverses : barres de capture ILS, flèches de tendance,... qui peuvent être interprétés dans un sens opposé à celui qui est attendu ; il est particulièrement critique pour la récupération d'attitudes inusuelles.
La possibilité de réaliser des affichages colorés s'accompagne de la publication de nombreuses présentations, par les industriels, montrant des symbologies, en pseudo 3D (volume en trois dimensions présenté en perspective sur un plan en deux dimensions, souvent qualifié de 2 D et demi ou 2,5D : itinéraires d'approche ou autre issues des travaux sur les HUD militaires des années 80 et 90). Le champ de la symbologie ne doit donc pas être considéré seulement en référence aux symboles actuels mais aussi avec ces représentations tridimensionnelles.

Comportement attendu ou non
Le degré de qualité de l’interprétation, par les pilotes, des symboles affichés peut être évalué de deux manière différentes :
Les comportements attendus : usage adapté des informations, réaction, au bon rythme, aux informations affichées, exploitation cohérente en situation dynamique. En d'autres termes, l'emploi des données, en situation, doit être simple, rapide (marque d’une acquisition aisée et d’un bon transfert d’apprentissage depuis d’autres systèmes) et stable (conservée dans le temps malgré un usage rare de certains modes).
Les comportements non attendus : Les modèles généraux sont nombreux quant aux indicateurs d'une difficulté : confusion, retard dans l'exploitation, approximation d'interprétation, variations interindividuelles dans l'emploi…

Textes et données de référence

<table>
<thead>
<tr>
<th>CS 25.1302 : (b) The flight deck controls and information intended for the flight crew use must:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Be presented in a clear and unambiguous form, at resolution and precision appropriate to the task, and (…)</td>
</tr>
<tr>
<td>AMC 25.1302 7.4.2 : clear and unambiguous presentation of information :</td>
</tr>
<tr>
<td>a) Qualitative and quantitative display formats</td>
</tr>
<tr>
<td>b) Consistency</td>
</tr>
<tr>
<td>c) Characters, fonts, lines and scale markings</td>
</tr>
<tr>
<td>d) Colour</td>
</tr>
<tr>
<td>e) Symbology, text and auditory messages</td>
</tr>
<tr>
<td>AMC 25.1303(b)(5) Attitude displays</td>
</tr>
<tr>
<td>AMC 25-11 5.b : Colour perception vs workload</td>
</tr>
</tbody>
</table>

(... Each symbol that needs separation because of the criticality of its information content should be identified by at least two distinctive coding parameters (size, shape, colour, location, etc.).)
AMC 25-11 7.e : Attitude
An accurate, easy, quick-glance interpretation of attitude should be possible for all expected unusual attitude situations and command guidance display configurations. The pitch attitude display scaling should be such that during normal maneuvers (such as take-off at high thrust-to-weight ratios) the horizon remains visible in the display with at least 2° pitch margin available. * In addition, extreme attitude symbology and automatically decluttering the EADI at extreme attitudes has been found acceptable (extreme attitude symbology should not be visible during normal maneuvering). Surprise, unusual attitudes should be conducted in the aeroplane to confirm the quick-glance interpretation of attitude. The attitude display should be examined in 360° of roll and ± 90° of pitch. This can usually be accomplished by rotating the attitude source through the required gyrations with the aeroplane powered on the ground. When the aeroplane hardware does not allow this type of evaluation, accurate laboratory simulations must be used.
SAE ARP 5288 7.1, 7.3
Display elements and symbology used in airplane control should be natural, intuitive, and not unduly dependent on training or adaptation for correct interpretation. (...) SAE ARP 5288 8.1 Standard symbology, 8.2 Symbol position, 8.3 Clutter. (..) To the degree possible symbology should use self-explanatory shapes and movements rather than abstract representations of the information to be conveyed. (..) The position of a message or symbol within a display conveys meaning to the pilot. Without the consistent or repeatable location of a symbol in a specific area of the HUD, interpretation errors and response times may increase. (..)

| Dispositions adaptées à l'observation | Pour évaluer efficacement l'aisance d'interprétation des symboles d'un HUD, plusieurs conditions doivent être rassemblées :
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- La mise en œuvre des symboles dans un contexte réaliste (scénario crédible de mise en situation).</td>
<td></td>
</tr>
<tr>
<td>- Le degré de connaissance des personnes devant utiliser l'interface en manifestation leur degré de compréhension?</td>
<td></td>
</tr>
<tr>
<td>- Des tâches produisant des résultats et des comportements permettant d'objectiver les éventuelles défauts dans cette compréhension (retard, actions incorrectes, confusion …),</td>
<td></td>
</tr>
</tbody>
</table>

Les simulateurs sont les outils les mieux adaptés à cette production d'un contexte maîtrisé impliquer l’usage des différentes symbologies à interpréter en situation.

Une analyse de tâche succinte spécifie les circonstances dans lesquelles il peut y avoir suspicion d'une difficulté d'interprétation des symboles. Le scénario de mise en situation matérialise la création de contextes permettant l'observation des comportements des pilotes "sujets". Le scénario doit également produire les données observables objectivant les difficultés éventuelles des pilotes.
Le degré de familiarité des pilotes avec les symbologies est un point clé en vue de l'analyse des résultats.
- S'il est question d'apprécier la spontanéité des interprétations par des pilotes ne connaissant pas la symbologie, leur naïveté est nécessaire. Ils ne disposeront que de leurs connaissances préalables.
- S'il est question d'apprécier l'aisance d'interprétation d'un équipage en situation routinière, il est nécessaire que cet équipage soit déjà familiarisé et que cette familiarité soit définie à l'aide d'un certain degré de performance attendue.

| Recueil de données | Les données recueillies sont directement liées au type d'évaluation sur |
| comportementales | L'interprétation des symboles : un ou quelques symboles, en situation simple ou complexe, stable ou fortement dynamique, par des pilotes familiers ou non... Ce seront les facteurs sur lesquels il aura été décidé que porte l'évaluation de l'interprétation des symboles. Deux grandes méthodes permettent de structurer ce recueil :
- **Observation** (données objectivées) en situation : les hésitations, mauvaise interprétation, erreurs, retards manifestent une mauvaise interprétation du rôle et de l’usage de symboles par la population de pilotes évaluatrice.
- **Entretien suite aux observations**. Il complète très utilement les observations en apportant de nombreuses informations sur les stratégies et nature des difficultés rencontrées par les pilotes et équipages.

| Interprétation des résultats | Bien que, grâce à l'intuitivité des symboles, une lecture précise, immédiate en toutes circonstances soit attendue, le degré de familiarité avec la symbologie est une condition clé pour la mise en situation. Toute lecture erronée de la part du pilote conduisant à une réaction forte et contraire aux actions qu'il devrait appliquer est hautement significative d'une défaillance dans le couple pilote - symbologie. Ceci ne devrait pas être rencontré dans des comportements de pilotage. Si celle-ci est observée, elle doit pouvoir être identifiée, récupérée ou contenue dans un délai compatible avec la situation de l'appareil. Le pilote ne peut, à lui seul, porter la responsabilité de la défaillance: son entraînement, les autres informations disponibles, la nature des symboles doivent aussi être questionnés. Les données complémentaires issues des entretiens sont les seules sources permettant d'éclairer les composantes de cette défaillance. |
4.2. Compatibilité avec les affichages en tête basse

Point de suspicion

Selon la réglementation, les symboles présentés en tête haute doivent être compatibles avec les symboles présentés en tête basse dans le cockpit. Plus précisément, il ne doit pas être utilisé le même symbole en tête haute et en tête basse pour désigner des informations différentes. En revanche, un symbole différent de celui de la tête basse peut être utilisé en tête haute pour présenter la même information, s’il n’y a pas d’ambiguïté avec d’autres symboles. Mal comprise, cette exigence aboutit à faire de la symbologie HUD une simple recopie des instruments en tête basse (exemple du HSI).

Historiquement, il faut noter que des transferts dans la forme des symboles se font également de la tête haute vers la tête basse. Ainsi certains instruments de pilotage en tête basse (PFD) présentent aujourd’hui un vecteur vitesse comme un HUD.

La **transition** entre pilotage tête haute et tête basse doit pouvoir se faire sans difficulté dans toutes les phases de vol concernées.

Au-delà du choix de la forme des symboles, la notion de compatibilité devrait être étendue au concept d’emploi de l’appareil : le HUD doit faire partie d’un ensemble d’instruments cohérent avec l’emploi de l’appareil.

La possibilité, évoquée dans la fiche précédente, de présentations en pseudo trois dimensions, spécifiques aux HUD, doit donc être aussi disponible dans les données affichées en tête basse.

| Textes et données de référence | AMC 25.1302
7.4.2 Clear and unambiguous presentation of information
Where similar information is presented in multiple locations or modes (e.g., visual, auditory), consistent presentation of information is desirable. Consistency within the system in information presentation tends to minimize flight crew error. If information presentation cannot be made consistent within the flight deck it should be shown that differences do not increase error rate or tasks times leading to significant safety, flight crewmember confusion, or flight crew workload implications.
7.7 Integration, incl. integration related workload and error
AMC 25.1303(b)(5) :
1.7 (...) *All the attitude displays in the aeroplane should have a similar presentation so as to prevent any risk of confusion in transferring attention from one display to another.*
AMC 25-11
8.c Source switching and annunciation
(7) *Mode and source select annunciations on electronic displays should be compatible (this does not mean that the labels have to be identical, but that they are unambiguous in being able to identify them as the same function) with labels on source and mode select switches and buttons located elsewhere in the cockpit.*
SAE ARP 5288
8.5 Head Up/Head Down Display Compatibility
The HUD and HDD formats and data sources need to be compatible to ensure that the same information presented on both displays have the same intended meaning. HUD and HDD display parameters should be consistent to avoid misinterpretation of similar information, but the display presentations need not be identical. (…) |

| Dispositions adaptées à l’observation | L’*Analyse de tâche* est une étape préliminaire visant à identifier dans quelles circonstances cette compatibilité avec les informations présentées en "tête basse" (sur les panneaux intérieurs du cockpit) est un éléments clé de la maîtrise de la situation et donc de la sécurité. |
Deux dimensions doivent être prises en compte par l'analyse de la tâche :
- L'homogénéité générale entre les symbologies présentées en "tête haute" et celles présentées en "tête basse".
- Le cas particulier de la transition entre "tête haute" et "tête basse" (qu'elle qu'en soit la direction de transition) pour laquelle cette homogénéité est nécessaire pour éviter tout retard ou confusion dans l'exploitation des données.
Le scénario de mise en situation qui en découle en simulateur doit donc mettre le pilote, ou l'équipage, en situation d'exploitation de données issues du HUD et de l'intérieur du cockpit ; que ce soit dans un contexte de défaillance d'un afficheur, de transition dans le traitement des données ou tout autre contexte induisant cette évaluation de la compatibilité.
La compétence, sur la symbologie, des équipages ou du pilote, leurs expériences éventuelles sur d'autres machines et donc d'autres symbologies devront être spécifiées afin de permettre une interprétation fiable des résultats obtenus.

Recueil de données comportementales

Les données observables recueillies à l'occasion de ces vols simulés avec mises en situation peuvent être les suivantes : lenteur d'identification, confusion de symboles, réaction inadaptée lors de transition, compréhension de la situation différente selon que les données en tête haute ou tête basse sont considérées. Elles manifestent l'incompatibilité entre symboles ou des dynamiques différentes dans l'affichage.

Questionnaire ou entretien viendront compléter qualitativement les données observées lors des vols simulés.

Interprétation des résultats

Tout constat d'un comportement conduisant à des réactions fortes et rapides mais erronées lors de transition montre une défaillance du couple symbologie - pilote.
Si celle-ci est observée, elle doit pouvoir être identifiée, récupérée ou contenue dans un délai compatible avec la situation de l'appareil.

La compatibilité entre symbologies hautes et basses est à la fois une nécessité et une réalité fragile en période de découverte de la symbologie par les pilotes.
Les confusions peuvent être issues de pratiques antérieures, d'incompatibilités effectives (même symbole pour deux significations différentes), d'une maîtrise modeste des symboles et affichages tant dans le cockpit que pour le HUD.

Ces points doivent, autant que faire ce peut, être clariifiés de manière à conduire à une interprétation utile.
Les entretiens et questionnaires sont nécessaire pour lever les doutes susceptibles de complexifier l'interprétation.
4.3. Logique et affichage des modes, confusion de modes affichés par le HUD

<table>
<thead>
<tr>
<th>Point de suspicion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il convient de distinguer l’affichage des modes du pilote automatique (typiquement un mode vertical et un mode horizontal) de celui des modes propres au HUD. Dans la mesure du possible, ces affichages devraient présenter une même logique pour garder la cohérence et éviter les surcharges comme les confusions. L’utilisation de symboles analogiques spécifiques à un mode peut permettre d’éviter des affichages alphanumériques supplémentaires (par exemple : boîte ILS).</td>
</tr>
<tr>
<td>La logique des modes propres au HUD, en particulier lorsque les changements de mode se font automatiquement, est un point critique à évaluer comme pour tout système automatisé (draft AC/AMC 25.1302).</td>
</tr>
<tr>
<td>Le HUD est plus qu’un moyen d’affichage : les HUD modernes offrent des modes de guidage (DV, FLARE, ATHR,..) dont les lois sont différentes des lois du pilote automatique. Se pose alors la question de leur pilotabilité et de la possibilité de surveiller leur fonctionnement depuis les instruments tête basse (monitoring).</td>
</tr>
<tr>
<td>Le problème de la confusion de mode relève du thème plus large de la compréhension du fonctionnement d’un automatisme par l’opérateur humain.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comportement attendu ou non</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les différents modes PA et les modes HUD doivent être signalés par des abréviations et par des changements de symbologie adéquats afin d’éviter les confusions, conformément à la réglementation. Les modèles de l’erreur humaine permettent de spécifier une gamme de comportements attendus ou non. Aucune non détection d’un changement, d’un signal de changement ou aucune interprétation erronée d’un changement perçu ne doit être rencontrée.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 25.1302 :</td>
</tr>
<tr>
<td>(c) Operationally-relevant behaviour of the installed equipment must be: (1) Predictable and unambiguous, and (2) Designed to enable the flightcrew to intervene in a manner appropriate to the task.</td>
</tr>
<tr>
<td>AMC 25.1302 :</td>
</tr>
<tr>
<td>7.5.1 (…) the system behavior needs to be such that a qualified flight crew can know what the system is doing and why. “Predictable and unambiguous” means that a crew can retain enough information about what the system will do under foreseeable circumstances as a result of crew action or a changing situation so that they can operate the system safely.</td>
</tr>
<tr>
<td>(…) if flight crew intervention is part of the intended function of the system the crewmember may need to take some action, or change an input to the system, and therefore the system must be designed accordingly.</td>
</tr>
<tr>
<td>Improved technologies, which have increased safety and performance, have also introduced the need to ensure proper cooperation between the flight crew and the integrated, complex information and control systems. If system behavior is not understood or expected by the flight crew, confusion may result. As system behavior depends on the functions allocated to it and the allocation of such functions also directly affects flight crew tasks, both should be considered in close combination. (…)</td>
</tr>
<tr>
<td>7.5.5 Displays for Automated Systems</td>
</tr>
<tr>
<td>Automated systems can perform various tasks with minimal crew interventions, but under the supervision of the flight crew. To ensure effective supervision and maintain crew awareness on system state and system “intention” (future states) the displays should provide salient feedback on:</td>
</tr>
</tbody>
</table>
a. Entries made by the crew into the system so that the crew can detect and correct errors.
b. Present state of the automated system or mode of operation. (What is it trying to do?)
c. Actions taken by the system to achieve or maintain a desired state. (What is it doing?)
d. Future states scheduled by the automation. (What is it doing next?)
e. Transitions between system states. (What is it going to do?)

The applicant should consider the following aspects of automated system design:
a. Indications of commanded and actual values enable the flight crew to determine whether
the automated systems will perform in accordance with their expectations;
b. If the automated system nears its operational authority or is operating abnormally for the
conditions, or is unable to perform at the selected level, it will inform the flight crew, as
appropriate for the task;
c. Support of crew coordination and cooperation by ensuring shared awareness of system
status and crew inputs to the system; and

d. Enabling the flight crew to review and confirm the accuracy of commands constructed
before being activated. This is particularly important for automated systems as they can
require complex input tasks.

CS 25.1309

(a) The aeroplane equipment and systems must be designed and installed so that:
(1) Those required for type certification or by operating rules, or whose improper functioning
would reduce safety, perform as intended under the aeroplane operating and environmental
conditions.
(…)

(c) Information concerning unsafe system operating conditions must be provided to the crew
to enable them to take appropriate corrective action. A warning indication must be provided if
immediate corrective action is required. Systems and controls, including indications and
annunciations must be designed to minimise crew errors, which could create additional
hazards.

AMC 25-11 8.c Source Switching and Annunciation

When the type or source of information presented on the primary flight instruments can
change meaning with manual or automatic mode or source selection, then this mode or
source must be inherently unambiguous from the format of the display or from appropriate
annunciation. (…)

(7) Mode and source select annunciations on electronic displays should be compatible (this
does not mean that the labels have to be identical, but that they are unambiguous in being
able to identify them as the same function) with labels on source and mode select switches
and buttons located elsewhere in the cockpit.

(8) If annunciation of automatic navigation system or flight control system mode switching is
provided by the electronic display, selected modes should be clearly annunciated with some
inherent attention-getting feature, such as a temporary box around the annunciation.
Examples include vertical or lateral mode capture, release of capture, and autopilot or
autothrottle mode change.

SAE ARP 5288 5.1.1 : Systems Controls

(…) Certain HUD system controls and mode annunciations may also need to be visible to and
accessible by other crew members. (…)

If a control function is required for HUD mode control or data entry, the control function data
entry panel shall be located such that either pilot can easily view and perform all mode control
selections from his seated position. HUD mode controls shall be implemented to minimize
pilot workload for data selection or data entry.

Some HUD systems may utilize Multifunction Control Display Units (MCDU), or similar data
entry panels, for control and display purposes. For HUDs that provide “Additional Credit” data
or guidance information (low visibility take-off guidance, or manual CAT IIIa guidance, are
examples), the HUD control information should be immediately available for viewing without
further pilot action.

SAE ARP 5288 8.4 : Visual Attention-Getting Techniques

Some HUD functions are intended to notify the pilot of important events. Examples include
navigation sensor status changes (e.g. VOR flag), computed data status changes (e.g. flight
director flag), and flight control system normal mode changes (e.g. annunciation changes from "armed" to "engaged").

Effective visual attention-getting techniques are needed to create an easily noticeable change and yet not be unduly distracting, so as to increase pilot workload. Effective visual techniques include symbol shape/size changes (e.g. temporarily placing a box around freshly changed modes), flashing symbols, and color changes. A legend change by itself is inadequate to positively announce automatic or uncommanded mode changes.

The use of flashing symbology as a visual attention-getting technique should be applied carefully. While flashing can be extremely effective, it should be used sparingly, (e.g. when immediate pilot intervention may be necessary). Short term flashing of symbols (e.g. approximately 10 seconds or flash until acknowledge) is easily noticeable, but a permanent or long term flashing symbol that is non-cancelable can be a significant distraction and should not be used. In addition to its potential for distraction, the excessive use of flashing, whether too often or lasting too long, can reduce its effectiveness. It becomes too commonplace. (...)

Test pilots and human factors specialists should carefully evaluate the use of flashing symbology.

To enhance the quick recognition and interpretation of an event (e.g. failure conditions, absence of required data) effective visual attention-getting techniques should be applied with a consistent, codified set of rules. For example, when a technique like dashes is used to indicate no computed data available (NCD) for one category of data, dashes should also be used to indicate NCD for other similar display parameters. When a strike-through line is used to indicate failure of one display parameter or mode (e.g., "ILS," "LNAV"), a strike-through line should be used for all similar failure conditions. Inconsistent use of such techniques can be misleading, with potential safety degradation. For example, the use of strike-through to indicate a non-conformal symbol in one case, and also to indicate a sensor failure would be confusing to the pilot.

Consistent use of techniques to indicate failure and NCD events within the HUD itself is a prime consideration. Of even greater importance, however, is the requirement for the failure/NCD indications used on the HUD to be consistent with the corresponding failure/NCD indications used on the head down displays. However, use of color coding alone for color capable HUDs would be an inadequate indication of failure/NCD conditions. Outside view background lighting and color can cause color shifts even in monochrome HUDs. SAE ARP 5288 9.3 : Mode Annunciation:

If annunciation of automatic navigation system or flight control system mode switching is provided by the HUD, selected modes should be clearly annunciated with some inherent attention getting feature, such as a temporary box around the annunciation. Examples include vertical or lateral mode capture, re-release of capture, and autopilot or autothrottle mode change.

Dispositions adaptées à l'observation

L'analyse de tâche doit rechercher les circonstances dans lesquelles peuvent survenir des changements de mode de contrôle de l'appareil par les automatismes, des changements d'affichage HUD issus de la survenue d'un autre contexte de pilotage (remise de gaz, cisaillement de vent...).

Les scénarios employés doivent mettre en situation les équipages ou pilotes vis-à-vis de : information affichée incohérente, disparition d'un symbole, réaction spécifique du HUD en certaines circonstances (séquence d'auto-test...), événement important lors d'une approche avec alarme associée et changement automatique de mode de contrôle...

Recueil de données comportementales

Les comportements et réactions induits par les faits insérés dans le scénario sont recueillis. Ces observables sont liés aux conséquences d'une difficulté d'interprétation, par exemple, d'une logique d'affichage, d'un changement inattendu de mode de contrôle en situation d'urgence.

Un entretien, ou un questionnaire, accompagne le vol simulé afin de recueillir les éléments qualitatifs sur l'explicitation de la difficulté rencontrée par le pilote.
| **Interprétation des résultats** | Aucune réaction forte suite à une interprétation erronée ou à une absence de prise en compte ne doit être observée dans ce contexte de modes et informations sur les changements. Si celle-ci est observée, elle doit pouvoir être identifiée, récupérée ou contenue dans un délai compatible avec la situation de l'appareil. |

4.4. **Clutter**

Point de suspicion

Différents problèmes récurrents dans l’usage des HUD (difficultés de détection des évolutions lentes anormales, de symbologie chargée provoquant un masquage de l’environnement extérieur, symbologie mal adaptée) sont liés à l’attention.

La notion de *clutter* est généralement retenue pour exprimer les difficultés d’attention dans l’usage du HUD. Le *clutter* désigne la saturation du champ visuel, tel qu’il peut être provoqué par la présentation d’une symbologie trop chargée.

La saturation de l’affichage est susceptible d’augmenter le temps nécessaire à l’interprétation des symboles. Elle pose également le problème spécifique aux HUD du possible masquage d’éléments extérieurs (trafic, obstacle sur la piste). Deux voies sont suggérées pour l’éviter : la simplification des symboles et la limitation de leur nombre aux informations requises pour la tâche courante.

Deux types de *clutter* doivent être distingués :

- **le *clutter* physique**, directement proportionnel au champ couvert par les symboles à leur nombre et à leur taille.

- **le *clutter* cognitif**, plus difficilement quantifiable, il est lié à la difficulté d’appréhension de symboles trop nombreux, ou aux effets de la focalisation sur un petit nombre des symboles disponibles.

Les solutions utilisées pour lutter contre le *clutter physique* consistent à alléger la symbologie en enlevant des symboles ou en changeant le format de représentation (numérique au lieu d’échelle) selon les contextes. L’allégement peut se faire soit de façon automatique en fonction de la phase de vol (e.g. au contact des roues) ou du mode actif (e.g. en mode AIII), soit au choix du pilote (mode *declutter*) (AMC 25-11, 5e). La hiérarchisation des symboles est également une solution technique pour éviter les masquages de symboles prioritaires par d’autres moins importants.

Le *clutter cognitif* est plus insidieux. Ce phénomène d’attention excessive allouée à la symbologie au détriment des autres éléments externes ou internes constitue un thème de recherche récurrent dans la littérature sur les HUD. Il est bien connu des utilisateurs de HUD ; il est fréquemment rencontré lors de leur formation. L’effet de masquage cognitif d’un objet sur la piste est possible quel que soit le degré de clutter physique puisqu’il peut être obtenu, en laboratoire, avec des symbologies extrêmement succinctes (cécité cognitive). Cet effet n’est donc pas propre à une symbologie mais à un conflit entre l’attention aux données affichées et celle portée à d’autres éléments visibles.

Les études sur l’allocation d’attention indiquent que la conformité favorise le suivi simultané du monde extérieur et de la symbologie et limite le *clutter cognitif*.

Les parades au *clutter cognitif* sont à rechercher essentiellement du côté des procédures d’emploi en opération qui aident le pilote à reconsidérer ses priorités et son exploitation des informations disponibles.

Comportement attendu ou non

Les réponses comportementales à un affichage encombré (*cluttered*) physiquement ou à la surcharge cognitive sont celles associées à la recherche d’information au sein d’un plus vaste ensemble (*extraction de données*) ou à l’interprétation de la situation à partir, à la fois, d’un ensemble de données affichées et des événements en cours. Il y sera question de : non
détectection de changement, difficulté d'extraction des données pertinentes, mauvaise sélection de symboles utilisés (par manque de temps pour trouver le bon), focalisation sur une partie de la symbologie, cécité "cognitive" sur le contexte ou tel ou tel symbole, incapacité à utiliser le HUD et retour vers un mode de contrôle de la situation plus rudimentaire.

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>AMC 25-11 5. e (identical to SAE ARP 5288 8.3) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>A cluttered display is one, which uses an excessive number and/or variety of symbols, colours, or small spatial relationships. This causes increased processing time for display interpretation. One of the goals of display format design is to convey information in a simple fashion in order to reduce display interpretation time. A related issue is the amount of information presented to the pilot. As this increases, tasks become more difficult as secondary information may detract from the interpretation of information necessary for the primary task. A second goal of display format design is to determine what information the pilot actually requires in order to perform the task at hand. This will serve to limit the amount of information that needs to be presented at any point in time. Addition of information by pilot selection may be desirable, particularly in the case of navigational displays, as long as the basic display modes remain uncluttered after pilot de-selection of secondary data. Automatic de-selection of data has been allowed in the past to enhance the pilot's performance in certain emergency conditions (de-selection of AFCS engaged mode annunciation and flight director in extreme attitudes).</td>
<td></td>
</tr>
</tbody>
</table>

| Dispositions adaptées à l'observation | Le déroulement d'un vol avec de nombreux contrôles, le recours à des informations utiles à l'extérieur du cockpit, des transitions entre sources d'information, une activité soutenue de l'équipage sont des éléments à mettre en œuvre dans la construction de scénarios. Ceci suppose la mise en œuvre conjointe de questions ayant trait au pilotage, au contrôle aérien, à la gestion de système, à la prise de décision. |

| Recueil de données comportementales | Les données comportementales à rechercher lors des vols en contextes simulés seront du type de celles évoquées dans les comportements non attendus : non détection de changement, difficulté d'extraction des données pertinentes, mauvaise sélection de symboles utilisés (par manque de temps pour trouver le bon), focalisation sur une partie de la symbologie, incapacité à utiliser le HUD, retour vers un mode de contrôle de la situation plus rudimentaire. Entretien ou questionnaire sont ici indispensables pour compléter les éléments recueillis en vue d'une bonne interprétation des résultats. |

| Interprétation des résultats | Devra être considéré comme critique tout "échappement" au contrôle de la situation dans les conséquences sont dommageables à la conduite du vol en situation complexe. L'interprétation devra alors mettre en avant que la |
| symbologie du HUD n'est pas compatible avec les contraintes cognitives rencontrées lors d'une séquence complexe. |
4.5. Performance du pilotage sous HUD

Point de suspicion

Les performances obtenues lors du pilotage sous HUD sont essentielles, tant pour les changements de trajectoire de grande amplitude (ex. : capture de faisceau ILS) que pour les tâches de contrôle fin (ex. : suivi du faisceau). Leur évaluation doit tenir compte des situations dans lesquelles certains symboles peuvent se trouver en butée (fort vent de travers, basses vitesses, etc). La représentativité du support d'évaluation (simulateur) est critique pour la qualité de ce type d'évaluation.

Comportements attendus ou non

Il est attendu du pilote et de l'équipage de pouvoir réaliser un pilotage de qualité comparable à celui obtenu avec les instruments "tête basse". Certaines phases de vols sont particulièrement indicatrices de cette qualité : les approches, la capture du faisceau ILS… C'est dans de telles conditions que sera recherchée la qualité de pilotage ou les limites, imprecision ou retard constatée du fait de l'usage et des caractéristiques de la symbologie du HUD.

Textes et données de référence

CS 25.1302 Installed Systems and Equipment for Use by the Flight Crew
This section applies to installed equipment intended for the flight crewmembers’ use in the operation of the airplane from their normally seated positions on the flight deck. This installed equipment must be shown, individually and in combination with other such equipment, to be designed so that qualified flight crewmembers trained in its use can safely perform their tasks associated with its intended function by meeting the following requirements: (…)
(b) Flight deck controls and information intended for flightcrew use must:
(1) Be presented in a clear and unambiguous form, at resolution and precision appropriate to the task.
(2) Be accessible and usable by the flightcrew in a manner consistent with the urgency, frequency, and duration of their tasks, (…)
AMC 25-11 : 7.d. Primary Flight Displays
(…)
(2) Scale Markings
(i) Air data displays have a requirement similar to attitude in that they must be able to convey to the pilot a quick-glance sense of the present speed or altitude. Conventional round-dial moving pointer displays inherently give some of this sense that may be difficult to duplicate on moving scales. Scale length is one attribute related to this quick-glance capability. The minimum visible airspeed scale length found acceptable for moving scales on jet transports has been 80 knots; since this minimum is dependent on other scale attributes and aeroplane operational speed range, variations from this should be verified for acceptability. Altimeters present special design problems in that –
(A) The ratio of total usable range to required resolution is a factor of 10 greater than for airspeed or attitude, and
(B) The consequences of losing sense of context of altitude can be catastrophic.

The combination of altimeter scale length and markings, therefore, should be adequate to allow sufficient resolution for precise manual altitude tracking in level flight, as well as enough scale length and markings to reinforce the pilot’s sense of altitude and to allow sufficient look-ahead room to adequately predict and accomplish level-off. Addition of radio altimeter information on the scale so that it is visually related to ground position may be helpful in giving low altitude awareness. Airspeed scale markings that remain relatively fixed (such as stall warning, VMO/MMO), or that are configuration dependent (such as flap limits), are desirable in that they offer the pilot a quick-glance sense of speed.
The markings should be predominant enough to confer the quick-glance sense information, but not so predominant as to be distracting when operating normally near those speeds (e.g. stabilised approach operating between stall warning and flap limit speeds).

(ii) Airspeed reference marks (bugs) on conventional airspeed indicators perform a useful function, and the implementation of them on electronic airspeed displays is encouraged. Computed airspeed/angle-of-attack reference marks (bugs) such as Vstall, Vstall warning, V1, VR, V2, flap limit speeds, etc., displayed on the airspeed scale will be evaluated for accuracy. Provision should be incorporated for a reference mark that will reflect the current target airspeed of the flight guidance system. This has been required in the past for some systems that have complex speed selection algorithms, in order to give the pilot adequate information required by CS 25.1309(c) for system monitoring.

(iii) If any scale reference marks would not be available when equipment included on the MEL is inoperative, then the display should be evaluated for acceptability both with and without these reference marks.

(iv) Digital present value readouts or present value indices should not totally obscure the scale markings or graduations as they pass the present value index.

(v) Adjacent scale markings that have potential for interfering with each other (such as V1, VR, V2 in close proximity) must be presented so that the intended reference values remain distinct and unambiguous.

(vi) At the present time, scale units marking for air data displays incorporated into PFDs are not required (‘knots’, ‘airspeed’ for airspeed, ‘feet’, ‘altitude’ for altimeters) as long as the content of the readout remains unambiguous. (…)

(vii) Airspeed scale graduations found to be acceptable have been in 5-knot increments with graduations labelled at 20-knot intervals. If trend or acceleration cues are used, or a digital present value readout is incorporated, scale markings at 10-knot intervals have been found acceptable. Minimum altimeter graduations should be in 30 m (100-foot) increments with a present value readout, or 15 m (50-foot) increments with a present value index only. (…)

(3) Vertically oriented moving scale airspeed indication is acceptable with higher numbers at the top or bottom if no airspeed trend or acceleration cues are associated with the speed scale. Such cues should be oriented so that increasing energy or speed results in upward motion of the cue. To be consistent with this convention, airspeed scales with these cues should have the high-speed numbers at the top. Speed, altitude, or vertical rate trend indicators should have appropriate hysteresis and damping to be useful and non-distracting. Evaluation should include turbulence expected in service.

(4) The integration of many parameters into one upper display makes necessary an evaluation of the effect of failure (either misleading or total loss) of a display at the most critical time for the pilot. The sudden loss of multiple parameters can greatly impact the ability of the pilot to cope with immediate aeroplane control tasks in certain flight regimes such as during take-off rotation. If such failures are probable during the critical exposure time, the system must be evaluated for acceptability of data lost to the pilot. Automatic sensing and switching may have to be incorporated to preserve a display of attitude in one of the primary displays on the side with the failure.

7.e Attitude

(1) (…). The pitch attitude display scaling should be such that during normal manoeuvres (such as take-off at high thrust-to-weight ratios) the horizon remains visible in the display with at least 2° pitch margin available.

SAE ARP 5288

7.4 Flight Path

An indication of the aircraft’s velocity vector, or flight path, is considered essential to most HUD applications. When inertially derived, flight path display information provides an instantaneous indication of where the aircraft is actually going. During an approach this information can be used to indicate the aircraft’s impact or touchdown point on the runway. Therefore, the flight path information can be used to set a precise climb or dive angle relative to the conformal outside scene or relative to the HUD’s flight path (pitch) reference scale and horizon displays. The lateral orientation of the flight path display should indicate the aircraft’s track, or drift, displayed relative to the aircraft’s longitudinal axis (boresight).
Air mass derived flight path may be displayed as an alternative. In this case the lateral orientation of the flight path display represents the aircraft's sideslip while the vertical position relative to the reference symbol represents the aircraft's angle of attack. Therefore, a strong headwind "deflects" the air mass derived flight path downward from its reference compared to a no-headwind approach, while lateral offsets of the flight path from its reference may indicate sideslip due to out-of-trim conditions possibly caused by and engine failure.

The type of flight path information displayed (inertial, air mass, GPS, or other) may be dependent on the operational characteristics of a particular aircraft and the phase of flight during which the flight path is to be displayed.

<table>
<thead>
<tr>
<th>Dispositions adaptées à l'observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'analyse de tâche et l'expérience des vols permet d'identifier les phases de vol et les contextes pour lesquels le degré de performance de pilotage doit être important. Approche avec fort vent de travers, suivi de faisceau ILS, vent instable sont des exemples de contextes pouvant être intégrés à des scénarios.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recueil de données comportementales</th>
</tr>
</thead>
<tbody>
<tr>
<td>La performance du pilotage avec HUD sera appréciée de la même manière que pour le pilotage "classique" : la précision du suivi de paramètre occupe une place essentielle. Vitesse, écart aux valeurs attendues, réactivité aux évolutions, maîtrise globale de la situation des données observables à recueillir.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interprétation des résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>De même que pour le pilotage classique, des attentes et des tolérances sont associées aux écarts de tenu des paramètres de vol et à leur récupération. Ils seront employés de la même manière pour l'appréciation de la performance de pilotage avec HUD.</td>
</tr>
</tbody>
</table>
Point de suspicion

Certaines manœuvres (arrondi, remise de gaz,...) peuvent induire des difficultés d'utilisation du HUD du fait de l'inertie de déplacement de symboles ou d'un faible taux de refaîchissement ; c'est pourquoi il est nécessaire de vérifier l'utilisabilité du HUD dans des situations très dynamiques.

Le taux de refaîchissement de la symbologie détermine des phénomènes qui peuvent être particulièrement gênants dans le cas des HUD, comme le scintillement (flicker) et les trainages de la symbologie lors de manœuvres rapides. Le retard (latency) et sa compensation éventuelle (quickening) sont à considérer.

Comportement attendu ou non

Ce point de suspicion traite d'une interaction entre les caractéristiques technologiques des HUD et les conséquences éventuelles de ces caractéristiques avec le pilotage. Les comportements attendus sont donc que le pilote n'éprouve aucune gène induite par des limites à la dynamique des symboles dans certaines configurations de changement rapide d'attitude de l'appareil.

Textes et données de référence

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC 25-11</td>
</tr>
<tr>
<td>6.e. Dynamics</td>
</tr>
</tbody>
</table>
| For those elements of the display that are normally in motion, any jitter, jerkiness, or ratcheting effect should neither be distracting nor objectionable. Screen data update rates for analogue symbols used in direct aeroplane or powerplant manual control tasks (such as attitude, engine parameters, etc.) should be equal to or greater than 15 Hz. Any lag introduced by the display system should be consistent with the aeroplane control task associated with that parameter. In particular, display system lag (including the sensor) for attitude should not exceed a first order equivalent time constant of 100 milliseconds for aeroplanes with conventional control system response. Evaluation should be conducted in worst-case aerodynamic conditions with appropriate stability augmentation systems off in order to determine the acceptability of display lag.
| Note: An update rate of 10 Hz for some engine parameters has been found acceptable on some aeroplanes. |
| SAE ARP 5288 : |
| 6.5 (similar to AMC 25-11 6.e) |
| 10.1.4 Simulation |
| Simulation is an invaluable tool for display evaluation. Acceptable simulation ranges from a rudimentary bench test set up, where the display elements are viewed statically, to full flight training simulation with motion, external visual scene, and entire airplane systems representation. For minor or simple changes to previously approved displays, one of these levels of simulation may be deemed adequate for display evaluation. For evaluation of display elements that relate directly to airplane control (that is, air data, attitude, thrust set parameters, etc.), simulation should not be relied upon entirely. The dynamics of airplane motion, coupled with the many added distractions and sensory demands made upon the pilot that are attendant to actual airplane flight, have a profound effect on the pilot's perception and usability of displays. Display designers, as well as FAA test pilots, should be aware that display formats previously approved in simulation may well turn out to be unacceptable in actual flight. |

Dispositions adaptées à l'observation

Les scénarios doivent comporter des mise en situation susceptibles d'induire une forte dynamique des symboles et donc d'éventuels effets parasites liés à cette dynamique : récupération d'attitudes inusuelles, opérations par fortes turbulences, fort vent de travers, etc.

Recueil de données comportementales

L'entretien ou le questionnaire sont adaptés au recueil des données exprimées par les pilotes sur leurs difficultés à exploiter tels ou tels
<table>
<thead>
<tr>
<th>Interprétation des résultats</th>
<th>L’ampleur de la gène occasionnée et le contexte de sa survenue seront des éléments clé de l’interprétation des résultats. Une gène mineure dans des contextes non dangereux sera différemment interprétée qu’une gène manifeste apparaissant dans un contexte critique.</th>
</tr>
</thead>
<tbody>
<tr>
<td>symboles. Les conséquences, en termes de performances de pilotage, seront sans doute trop ténues pour être appréciées dans ce genre de circonstance.</td>
<td></td>
</tr>
</tbody>
</table>
4.7. Utilisation pour le pilotage des transitions

Point de suspicion

L'utilisation du HUD pour le pilotage de transitions (rotation, remise de gaz, arrondi) a été identifiée comme potentiellement sensible.

L'étude des symbologies affichées lors des transitions révèle la co-existence de différentes solutions adoptées par les équipementiers pour résoudre des points potentiellement délicats dans l'utilisation du HUD. De façon générale, les transitions entre deux phases du vol imposent un changement dans la façon d'opérer. Lors de l'utilisation d'un HUD, les transitions peuvent ainsi concerner :

- l’information sur laquelle porte la consigne (passage d’une référence pente à une référence assiette lors de la remise de gaz par exemple) ;
- le mode de pilotage (de manuel à automatique ou inversement).

Comportement attendu ou non

Les comportements attendus issus d'un usage aisé du HUD expriment la fluidité du contrôle de l'appareil et une continuité de l'usage du HUD lors d'une séquence de transition majeure. Inversement donc une difficulté à comprendre les symboles du HUD lors d'une séquence de transition de mode ou de contexte de pilotage, une rupture dans la dynamique du pilotage expriment un usage difficile dans de tels contextes.

Textes et données de référence

<table>
<thead>
<tr>
<th>CS 25.1302 :</th>
<th>(b) Flight deck controls and information intended for flightcrew use must:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Be presented in a clear and unambiguous form, at resolution and precision appropriate to the task.</td>
</tr>
<tr>
<td>(2)</td>
<td>Be accessible and usable by the flightcrew in a manner consistent with the urgency, frequency, and duration of their tasks, and (...)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CS 25.1335 Flight director systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Means must be provided to indicate to the flight crew the current mode of operation and any modes armed by the pilot. Selector switch position is not acceptable as a means of indication.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMC 25-11 :</th>
<th>5.b, 6.e. Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>For those elements of the display that are normally in motion, any jitter, jerkiness, or ratcheting effect should neither be distracting nor objectionable. Screen data update rates for analogue symbols used in direct aeroplane or powerplant manual control tasks (such as attitude, engine parameters, etc.) should be equal to or greater than 15 Hz. Any lag introduced by the display system should be consistent with the aeroplane control task associated with that parameter. In particular, display system lag (including the sensor) for attitude should not exceed a first order equivalent time constant of 100 milliseconds for aeroplanes with conventional control system response. Evaluation should be conducted in worst-case aerodynamic conditions with appropriate stability augmentation systems off in order to determine the acceptability of display lag.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAE ARP 5288 7.1 :</th>
</tr>
</thead>
<tbody>
<tr>
<td>(...) all deviations [to the basic guidelines] must be harmonised with both the HUD and HDD(s) to minimise impacts on scan, information transfer, workload, visual transitions, training, or pilot performance. Deviations from the relative left side/right side arrangement of airspeed/mach and barometric altitude information have a great potential to induce pilot error, and should not normally be accepted. Test pilots, designers, and human factors specialists should carefully evaluate proposed formats and data elements which deviate from guidelines or cockpit convention for such impacts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAE ARP 5288</th>
</tr>
</thead>
</table>
8.1 Standard Symbology
Since the standardization of HUD symbology can minimize pilot error and shorten training and transition times, the application of commonly used symbology is recommended. (…)

<table>
<thead>
<tr>
<th>Dispositions adaptées à l'observation</th>
<th>Toute situation se traduisant par un changement de contexte soudain et donc un changement important dans les données affichées ou dans la logique de pilotage (remise de gaz) doit être retenue comme élément constitutif de scénario pour l'évaluation de l'usage en situation de transition. L'analyse de tâche recherchera ces situations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recueil de données comportementales</td>
<td>Les données recherchées concernent les conséquences d'une difficulté à assurer la continuité du contrôle de la situation, à l'aide du HUD, en situation de transition. Ainsi, le recours à d'autres données en tête basse, le retard dans le suivi de paramètres, une interprétation erronée de la transition seront recherchées. Les données comportementales seront complétées des résultats d'entretien ou de questionnaire sur la manière dont la transition a été comprise et le contrôle plus ou moins maintenu.</td>
</tr>
<tr>
<td>Interprétation des résultats</td>
<td>La gravité des conséquences du retard de réaction à la transition ou d'une moindre qualité du contrôle lors de celle-ci guidera l'interprétation des résultats. Toute réaction forte contraire aux attentes nécessaires à un bon contrôle de la situation seront un signe de l'importance de la difficulté à assurer le pilotage en transition.</td>
</tr>
</tbody>
</table>
4.8. Utilisation aux attitudes inusuelles et représentation spatiale du pilote

Point de suspicion

Historiquement, les HUD sont apparus dès les années 1950 sur les avions militaires comme viseurs de tir au canon. Pour cette application, le HUD présentait des avantages significatifs sur les prédécesseurs mécaniques fixes : présentation d’une information actualisée en fonction des paramètres de tir et intérêt du pilotage en tête haute pour suivre la cible. Les informations n’étaient alors pas nécessairement conformes dans la mesure où les échelles compressées pouvaient contribuer à améliorer le contrôle en assiette lorsque celle-ci était élevée.

Le besoin d’une bonne représentation spatiale est sensible notamment dans les situations de transitions (arrondi, remise de gaz) et dans la récupération des attitudes inusuelles, en particulier par mauvaise visibilité.

L’usage actuel est très élargi. Il est question de piloter à l’aide du HUD dans des contextes très diversifiés. Ce peut être avec un environnement parfaitement visible pour lequel la conformité sera une qualité majeure pour la construction d’une représentation mentale adaptée ou à l’opposé en vol sans visibilité pour lequel les seules informations spatiales disponibles seront issues du HUD.

Cette préoccupation est reprise par la réglementation en vigueur :

“EFIS displays must be able to convey to the pilot a quick-glance sense of the present speed, attitude and altitude.” (AC/AMC 25-11, 7d.2i.)

La capacité d’un HUD à permettre le rétablissement depuis des attitudes inusuelles (typiquement au-délà de –20/+30 degrés d’assiette longitudinale ou +/-60 degrés d’inclinaison latérale) est un aspect important abordé lors de la certification. Différentes solutions peuvent être adoptées, allant d’une transition vers les instruments de pilotage en tête basse, jusqu’au développement de symbologies dédiées à ces attitudes, comprenant classiquement une compression de l’échelle de tангage et un allégement de la symbologie usuelle.

Comportement attendu ou non

Chaque symbole et l’ensemble de ceux-ci doivent procurer aux pilotes la possibilité de se construire une représentation spatiale correcte de l’attitude de l’avion. Les comportements attendus sont ceux liés au pilotage efficace de l’avion, grâce au HUD, dans des situations inusuelles. La représentation spatiale doit être conservée et actualisée dans cette situation très dynamique. En conséquence, la récupération de la maîtrise du vol doit être effective. Tout retard, dans cette récupération de la maîtrise, dû à une difficulté d’interprétation de la symbologie du HUD est manifeste d’une défaillance dans l’usage de la symbologie.

Textes et données de référence

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 25.1303 Flight and navigation instruments</td>
</tr>
<tr>
<td>(b) The following flight and navigation instruments must be installed at each pilot station: (..)</td>
</tr>
<tr>
<td>(5) A bank and pitch indicator (gyroscopically stabilised). (See AMC 25.1303 (b)(5).)</td>
</tr>
<tr>
<td>(6) A direction indicator (gyroscopically stabilised, magnetic or non-magnetic).</td>
</tr>
<tr>
<td>AMC 25.1303(b)(5) Attitude Displays</td>
</tr>
<tr>
<td>1 Attitude Displays</td>
</tr>
<tr>
<td>1.1 For turbo-jet aeroplanes each display should be usable over the full range of 360° in pitch and in roll. For propeller-driven aeroplanes the pitch range may be reduced to ± 75° provided that no misleading indication is given when the limiting attitude is exceeded.</td>
</tr>
</tbody>
</table>
1.6 The artificial horizon line should remain in view over a range of pitch attitudes sufficient to cover all normal operation of the aeroplane plus a margin of not less than 2° in either direction. Additional 'ghost' horizon lines should be provided parallel to the main horizon line so that beyond this range at least one such line is in view at an attitude with the range of the display.

1.7 The pitch attitude scale should be sensibly linear while the main horizontal line is in view, but may become non-linear beyond this range. (…)

1.11 The 'earth' and 'sky' areas of the display should be of contrasting colours or shades. The distinction should not be lost at any pitch or roll angle.

2 Attitude Display Systems (Acceptable Means of Compliance)

2.3 The definition of dangerously incorrect information depends to some extent on the characteristics of the aeroplane, but in general an error greater than 5° in pitch or 10° in roll will be considered to be dangerous.

AMC 25-11 7.e. Attitude

(1) An accurate, easy, quick-glance interpretation of attitude should be possible for all expected unusual attitude situations and command guidance display configurations. The pitch attitude display scaling should be such that during normal manoeuvres (such as take-off at high thrust-to-weight ratios) the horizon remains visible in the display with at least 2° pitch margin available. * In addition, extreme attitude symbology and automatically decluttering the EADI at extreme attitudes has been found acceptable (extreme attitude symbology should not be visible during normal manoeuvring). Surprise, unusual attitudes should be conducted in the aeroplane to confirm the quick-glance interpretation of attitude. The attitude display should be examined in 360° of roll and ± 90° of pitch. This can usually be accomplished by rotating the attitude source through the required gyrations with the aeroplane powered on the ground. When the aeroplane hardware does not allow this type of evaluation, accurate laboratory simulations must be used.

* See AMC 25.1303 (b)(5) paragraph 1.6

SAE ARP 5288:

7.3 Attitude: similar to AMC 25-11 7.e.

7.4: Flight Path

An indication of the aircraft's velocity vector, or flight path, is considered essential to most HUD applications. When inertially derived, flight path display information provides an instantaneous indication of where the aircraft is actually going. (…). Air mass derived flight path may be displayed as an alternative. (…)

10.4: Unusual Attitude Recovery Testing

When the HUD can be used as a primary flight reference, effective aircraft attitude symbology must be provided to facilitate unusual attitude recovery (UAR). (…)

* See the reference document for more details…

Dispositions adaptées à l'observation

| Une revue des situations inusuelles permet d'en dresser une liste. Chacun des points peut être inséré dans un scénario de mise en situation. L'accent doit être mis tout autant sur les circonstances qui induisent le glissement vers cette situation inusuelle que sur sa récupération. En effet, la conservation d'une bonne représentation spatiale se fait tout au long de ce processus. La brutalité tout autant que la lenteur du glissement vers une situation inusuelle sont à mettre en situation. De même, la juxtaposition de causes ou de contextes variés conduisant à une situation inusuelle dans laquelle le pilote s'est engagé lui même ou s'est trouvé engagé sont à rechercher dans le scénario. |

Recueil de données comportementales

Le recueil vise tout comportement montrant une perte de contrôle de la situation, que ce soit dans son installation ou dans sa récupération.

Interprétation des résultats

L'interprétation se fonde sur l'ampleur et la force des réactions liées à la perte de contrôle en situation inusuelle.
4.9. Charge de travail induite par le HUD

Point de suspicion

L'utilisation du HUD en ligne modifie les tâches de l'équipage et peut donc avoir des conséquences sur sa charge de travail. Certaines tâches préalables à l’usage du HUD (entrées des données) peuvent également induire une charge de travail supplémentaire.

La non augmentation de la *charge de travail* est un critère primordial de la certification d’un HUD

La charge de travail comporte une double dimension :

- La *pénibilité* de l’usage du fait de l’inadéquation du dispositif à son contexte d’emploi (luminosité, position, moindre familiarité…)
- Le *degré de compatibilité* entre les actions et traitements à effectuer et le délai disponible (un décalage marqué entre le volume d’activité et les délais induit un conflit d’objectif générateur de charge de travail.).

Comportement attendu ou non

L’usage du HUD ne doit être source ni de pénibilité pour la durée de son usage ni de conflit d’activité incompatible avec les délais disponibles.

La difficulté avec l'appréciation de la charge de travail, éventuellement liée à l'usage du HUD, est que cette charge est une résultante. Il y a sentiment d'une charge de travail élevée lorsque l'attention demandée par le suivi et l'exécution d'une tâche n'est plus complètement compatible avec les ressources attentionnelles disponibles dans le temps imparti. Une des conséquences caractéristiques d'une charge de travail élevée est l'incapacité à prendre en compte l'ensemble des informations : certaines stimulations sont ignorées, des actions sont oubliées…

Cette impossibilité de mener à bien toute la tâche dans le délai imparti a des effets systématicques : modification des processus opératoires, omission d'étapes de la tâche, allègement des vérifications, report de certaines planifications.

C’est l'ensemble de ces manques qui produit à la fois une imprécision dans le contrôle de l'activité et un sentiment de frustration chez la personne soumis à ce degré de charge de travail.

Tout élément, lié à l’usage du HUD, mobilisant des ressources de la personne au détriment d’une autre activité est susceptible d’induire une forte charge de travail. C’est en ce sens que la charge de travail est une résultante d’autres dimensions. Une symbologie inadaptée, des interruptions fréquentes pour aller prélever des données en tête basse peuvent contribuer à l’élévation de la charge de travail.

Textes et données de référence

AMC 25.1302
7.5.2 System Function Allocation (…)

As a design approval objective the applicant should show that functions were allocated in such a way that:

a. The flight crew can be expected to complete their allocated tasks successfully in both normal and non-normal operational conditions, within the bounds of acceptable workload and without inducing undue concentration and fatigue (see CS 25.1523 for workload evaluation);

(…)

7.7.2 Consistency

Consistency needs to be considered within a given system and across the flight deck. Inconsistencies may result in vulnerabilities, such as increased workload and errors, especially during stressful situations. (…)

sous-direction de la sécurité et de l’espace aérien 64
7.7.3 Consistency Trade-Offs
It is recognized that it is neither always possible nor desirable to provide a consistent pilot interface. It is possible to negatively impact workload, despite conformance with the flight deck design philosophy, principles of consistency, etc. (…)

7.7.5 Integration Related Workload and Error
When integrating functions and/or equipment, designers should be aware of the potential effects, both positive and negative, that integration can have on crew workload and its subsequent impact on error management. Systems must be designed and evaluated both in isolation and in combination with other flight deck systems to ensure that the flight crew is able to detect, reverse, or recover from errors. This may be more challenging when integrating systems that employ higher levels of automation or that have a high degree of interaction and dependency on other flight deck systems.
Applicants should show that the integrated design does not adversely impact workload or errors given the context of the entire flight regime (e.g., increased time to interpret a function, make a decision, and/or take appropriate actions).

JAR HUDS 903 4.a

The use of the HUD must not unduly fatigue the pilot (e.g., due to eye strain, maintaining a rigid head position, or excessive mental concentration). The workload associated with the use of the HUD must be considered in showing compliance with CS 25.1523 app D.

AMC 25-11

5.b. Colour Perception vs. Workload
(1) When colour displays are used, colours should be selected to minimise display interpretation workload. Symbol colouring should be related to the task or crew operation function. Improper colour coding increases response times for display item recognition and selection, and increases the likelihood of errors in situations where response rate demands exceed response accuracy demands.

Colour assignments that differ from other displays in use, either electromechanical or electronic, or that differ from common usage (such as red, yellow, and green for stoplights), can potentially lead to confusion and information transfer problems.

(2) When symbology is configured such that symbol characterisation is not based on colour contrast alone, but on shape as well, then the colour information is seen to add a desirable degree of redundancy to the displayed information. There are conditions in which pilots whose vision is colour deficient can obtain waivers for medical qualifications under crew licence regulations. In addition, normal ageing of the eye can reduce the ability to sharply focus on red objects, or discriminate blue/green. For pilots with such deficiency, display interpretation workload may be unacceptably increased unless symbology is coded in more dimensions than colour alone. Each symbol that needs separation because of the criticality of its information content should be identified by at least two distinctive coding parameters (size, shape, colour, location, etc.). (…)

7.f. Digital, Analogue and Combinations
The Agency has a long-standing policy of not accepting digital only displays of control parameters. The reason was the belief that only analogue data in the form of a pointer/scale relationship provided necessary rate, trend, and displacement information to the pilot. However, the Agency will evaluate new electronic display formats, which include digital-only or combinations of digital and analogue displays of air data, engine instruments, or navigation data. Digital information displays will be evaluated on the basis that they can be used to provide the same or better level of performance and pilot workload as analogue displays of the same parameters. Simulator studies can be valuable in providing experience with new display formats, but care must be taken to ensure that the simulator provides all the environmental cues germane to the parameter being evaluated.

SAE ARP 5288

5.2.3 HUD Display Viewing Angles
(…) The amount of vertical and horizontal head movement needed to see the total FOV should not cause excessive pilot workload or discomfort.

6.2.6 Manual and Automatic Luminance Control
The HUD system should have both manual and automatic luminance control capabilities.
While the luminance control is varied, the relative luminance of all displayed symbols, characters, lines, and generated backgrounds shall generally track the control setting in a smooth and easily controllable manner without abrupt luminance changes. In no case shall any symbols or characters become invisible at the minimum luminance setting while other characters or symbols are usable. If the HUD system has both manual and automatic luminance control modes, there shall be no objectionable luminance transients while transitioning from manual to automatic mode, or from automatic to manual control mode. Note: Automatic luminance control is highly recommended and may be required for CAT II and CAT III operations when the pilot may not have time to manually adjust the luminance.

7.1 General

To maximize compatibility with head down display configurations, the principles of instrument arrangement specified in FAR §25.1321 (also known as the “Basic T”) should be applied as design guidance for the HUD. Deviations from that arrangement, while possible, should only be adopted based upon substantiated human factors research or flight experience obtained from commercial, military, foreign, or other sources. An Equivalent Level of Safety Finding would normally be required. (…)

HUD design objectives related to the HUD’s intended use, display of sensor data, field-of-view, clutter, compatibility with head down instruments (see 8.5), differences in center reference points or symbology, and so on, may justify the need for some deviation to the basic guidelines.

However, all deviations must be harmonized with both the HUD and HDD(s) to minimize impacts on scan, information transfer, workload, visual transitions, training, or pilot performance.

8.4 Visual Attention-Getting Techniques

Some HUD functions are intended to notify the pilot of important events. Examples include navigation sensor status changes (e.g. VOR flag), computed data status changes (e.g. flight director flag), and flight control system normal mode changes (e.g. annunciation changes from “armed” to “engaged”). Effective visual attention-getting techniques are needed to create an easily noticeable change and yet not be unduly distracting, so as to increase pilot workload.
| résultats | travail induite par l'usage du HUD que par les manifestations des conséquences induites par cette charge. En effet, la nature "non consciente" du délestage cognitif que provoque la charge de travail est susceptible de porter sur n'importe quel aspect du pilotage, y compris des actions pourtant estimées fondamentales. |
4.10. Partage des informations, monitoring et interactions dans un cockpit HUD

Point de suspicion

La symbologie HUD n’étant visible que depuis le poste de pilotage auquel il est installé, le HUD pose un problème spécifique en matière de partage d’information au sein de l’équipage. Ce problème se pose à deux niveaux : lors des programmes de certification (équipe pilote - ingénieur d’essais) et lors de l’utilisation opérationnelle : des procédures spécifiques peuvent être requises afin d’assurer la surveillance réciproque.

Les différents concepts d’emploi déterminent plusieurs partages des tâches et des informations au sein de l’équipage. À titre d’exemple, selon que le CDB est PF ou non, le HUD peut être utilisé comme instrument de pilotage ou comme instrument de monitoring. Dans les deux cas, la nature et la précision des informations présentées sur le HUD et en tête basse ne sont pas en correspondance parfaite.

Globalement, le HUD modifie le partage des tâches dans le cockpit et requiert de ce fait une pratique régulière.

Comportement attendu ou non

Le partage générique de tâches lié au HUD (indépendamment de ceux déterminés au sein des compagnies) ne doit pas montrer de circonstances dans lesquelles est induit un défaut de contrôle dans le pilotage.

Textes et données de référence

AMC 25.1302 7.5.2 System Function Allocation

As system behavior depends on the functions allocated to it and allocation of such functions also directly affects the flight crew tasks, both should be considered in close combination. The result of a system functional allocation is a description of system functions and flight crew tasks allocated to either the system, the human, or a combination thereof. It is recommended that functional allocation be documented as part of the design development activities, and that the allocation be applied in a manner that is consistent with the relevant flight deck design philosophy.

As a design approval objective the applicant should show that functions were allocated in such a way that:

a. The flight crew can be expected to complete their allocated tasks successfully in both normal and non-normal operational conditions, within the bounds of acceptable workload and without inducing undue concentration and fatigue (see CS 25.1523 for workload evaluation);

b. Flight crew interaction with the system enables them to understand the situation as assumed per the design assumptions, and enables timely detection of failures and crew intervention if applicable;

c. Task sharing and the distribution of tasks between the flight crew members during normal and non-normal operations is considered.

AMC 25-11

5.d Symbol Position

(3) Pilot and co-pilot displays may have minor differences in format, but all such differences should be evaluated specifically to ensure that no potential for interpretation error exists when pilots make cross-side display comparisons.

SAE ARP 5288

3.2 Types of Applications

3.2.1 Supplemental Use: A HUD may be used to supplement flight deck instrumentation for use in the performance of a particular task or operation. A HUD approved for supplemental use does not replace the conventional head down flight deck information. (…)

The primary cockpit instruments shall continue to be utilized as the primary means for
manually controlling or maneuvering the aircraft. However, certain components of a PFR may be displayed (or repeated) on a HUD approved for supplemental use. This would allow the HUD to also be utilized as a means for manually controlling or maneuvering the aircraft. If this is the case, then, to minimize the need to transition between head up and head down information required in the controlling or maneuvering of the aircraft, all PFR components (see section 3.3.1 below) should be provided on the HUD.

3.2.2 Alternate Use: A HUD may be used as an alternate source of primary information for use in the performance of a particular task or operation. This information should be presented in a manner such that the pilot can rely on the information presented by the HUD, in lieu of scanning the conventional head down instruments typically used for the task to be performed.

(...). An Alternate Use PFD may be difficult to certify due to certain HUD constraints not necessarily associated with symbology (e.g. cross cockpit viewing).

9.4 Alerting issues

Single HUD installations can take credit for the copilot monitoring of head down instruments and alerting systems, for failures of systems, modes, and functions not associated with primary flight displays.

<table>
<thead>
<tr>
<th>Dispositions adaptées à l'observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les circonstances pour lesquelles le partage de tâche et le contrôle croisé sont menés en intégrant l'usage du HUD sont à rechercher par analyse de la tâche. L'usage du HUD par l'un des pilotes modifie l'interaction au sein de l'équipage puisque l'un des pilotes est seul à disposer de données spécifiques au vol. De telles circonstances doivent donc être incluse au sein de scénarios susceptible de mettre en évidence un moindre contrôle de la situation du fait de l'usage du HUD. Les procédures développées par les compagnies sont censées traiter ce type de point. Il est donc aussi concevable d'intégrer des données génériques de procédures "compagnie" pour ne pas construire des scénarios et des usages qui seraient trop distants de la réalité opérationnelle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recueil de données comportementales</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'observation de comportements liés au partage de tâches au sein de l'équipage demande un relevé fin de l'activité. En effet, le partage de tâche et les contrôles croisés peuvent être très dynamiques. L'enregistrement vidéo autorise un dépouillement ultérieur détaillé si nécessaire. Au-delà de ces données objectives, un entretien permet de lever de nombreux doutes sur les stratégies des pilotes lors des séquences d'action enregistrées.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interprétation des résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les manques de cohérence relevés dans le partage des tâches et les contrôles guident l'interprétation. L'ampleur des conséquences, la nature de ces manques sont à considérer en ce qu'ils ouvrent la porte à une perte de conscience de la situation et à des échappements de la maîtrise du vol.</td>
</tr>
</tbody>
</table>
4.11. Intégration du HUD vis-à-vis des opérations

Point de suspicion

Du fait de la modification des possibilités de cross check, l’intégration du HUD dans le cadre opérationnel impose la définition de protocoles d’interactions spécifiques.

Il convient également de considérer les décalages possibles entre la documentation fournie par l’équipementier et la certification. Ainsi, les guides pilotes fournis avec les HUD décrivent l’ensemble des modes de fonctionnement disponibles, certains n’étant pas encore été nécessairement certifiés. Ces décalages sont progressivement réduits au fur et à mesure de l’extension de la certification. Ce problème est sensible avec les HUD récents conçus pour être utilisés dans la totalité des phases de vol mais certifiés principalement pour les approches par mauvaise visibilité.

Pour ce qui concerne l’approbation opérationnelle, des limitations d’emploi sont parfois imposées par la compagnie utilisatrice elle-même, suite à l’expérience acquise lors de la mise en exploitation de l’équipement ou à des difficultés d’utilisation rapportées.

Des défauts de correspondance entre l’usage réel par l’opérateur, les usages prescrits par l’exploitant et par la certification, et les fonctionnalités disponibles pour un HUD donné, schématisés sur la Figure 1, constituent des zones de fragilité qui méritent une attention particulière, au niveau des formations et des dispositifs de retour d’expérience. Une autre solution au même problème résiderait dans les limitations à imposer éventuellement sur les fonctionnalités offertes par les équipements.

![Figure 1: Les défauts de correspondance entre usages réel, prescrits et disponibles.](image)

Comportement attendu ou non

L’usage opérationnel du HUD est susceptible de s’écarter des fonctionnalités qui ont été prévues et certifiées ou d’être en éventuelle divergence entre ces fonctionnalités et les opérations telles que définies par une compagnie. Ces divergences peuvent aussi résulter de dérive propres au pilotage qui tirerait parti de possibilité présentent mais non (encore) certifié de la symbologie du HUD. L’observation de tels écarts manifeste l’existence d’une difficulté d’intégration du HUD vis-à-vis des opérations de la compagnie.

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>CS/AMC 25.1302</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7.7.2 Consistency</td>
</tr>
<tr>
<td></td>
<td>Consistency needs to be considered within a given system and across the flight deck.</td>
</tr>
<tr>
<td></td>
<td>Inconsistencies may result in vulnerabilities, such as increased workload and errors, especially during stressful situations. (...)</td>
</tr>
<tr>
<td></td>
<td>While it is noted that trade-offs exist, as discussed in the next section, the following are areas</td>
</tr>
</tbody>
</table>
to consider with respect to consistency within and across systems:

a. Symbology, data entry conventions, formatting, color philosophy, terminology, and labeling.
b. Function and logic, e.g., where two or more systems are active and performing the same function then they should operate consistently and use the same style interface.
c. Information presented with other information of the same type that is used in the flight deck

(...)
d. The operational environment, e.g., where a flight management system is consistent with the operational environment so that the order of the steps required to enter a clearance into the system is consistent with the order in which they are given by air traffic management.

Adherence to a flight deck design philosophy is one means of achieving consistency within a given system as well as within the overall flight deck. Another means of achieving consistency is to standardize aspects of the design. (…)

CS 25.1585 Operating procedures

(a) Operating procedures must be furnished for

(1) Normal procedures peculiar to the particular type or model encountered in connection with routine operations;
(2) Non-normal procedures for malfunction cases and failure conditions involving the use of special systems or the alternative use of regular systems; and
(3) Emergency procedures for foreseeable but unusual situations in which immediate and precise action by the crew may be expected to substantially reduce the risk of catastrophe.

SAE ARP 5288 3.2 Types of Applications

The following definitions of HUD applications are based on functional usage that may vary with the phase of flight. The category of HUD use, as defined in the following paragraphs, therefore may also vary with the phase of flight. For example, in many cases a HUD installation will be defined and certified as supplemental use for most flight phases but as additional credit use for a particular flight phase, such as approach and landing.

3.2.1 Supplemental Use

(...) If the HUD could cause unsafe conditions through misuse in phases of flight other than those for which it was approved, appropriate limitations should be specified. For example, an approach and landing HUD which was not designed for cruise flight may not be operationally suitable for use at high speed or in level flight. If this possibility exists, appropriate limitations should be described to preclude its use in that situation.

3.2.3 Additional Credit Use

(...) It should be noted that approval of the HUD installation does not guarantee the operational authorization. Other factors, such as the operator's approved procedures, crew training, and maintenance program, must also be in place.

Dispositions adaptées à l'observation

La démarche de certification vient nettement en amont de l'usage opérationnel en compagnie. Il n'est guère envisageable d'attendre une telle mise en œuvre pour apprécier l'adaptation d'un HUD à son usage dans un cadre opérationnel. Les heures de vol en compagnie assurées par les pilotes certificateurs leur permettent de se constituer une représentation pertinente des activités opérationnelle et des usages réels qu'il est imaginable de rencontrer en situation routinière.

Les conditions à mettre en œuvre à l'aide d'un scénario en simulateur sont donc extraites de ce répertoire d'expérience acquis par ces pilotes.

Recueil de données comportementales

Les données recherchées pour apprécier l'intégration du HUD aux opérations des compagnies consistent en la recherche de déviation à l'usage prescrit par la compagnie à la suite de la certification. Ces dérives apparaissent dans l'usage quotidien, mais sont issues des possibilités offertes par la symbologie effective du HUD.

Deux populations peuvent être mises en situation pour cette approche : des pilotes de compagnies connaissant bien les pratiques habituelles, des pilotes certificateurs au fait du détail de fonctionnement des HUD et des dérives.
envisageables dans son usage effectif. Ces dérives peuvent être localisées, le cas échéant, par la comparaison entre les fonctionnalités faisant l'objet de la certification et les fonctionnalités effectivement disponibles sur le HUD.

<table>
<thead>
<tr>
<th>Interprétation des résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>L'interprétation porte sur la nature des écarts entre les fonctionnalités certifiées, l'usage prescrit et l'usage réel possible. Les interactions conflictuelles ou lacunaires sont appréciées en relation avec leurs conséquences potentielles dans la maîtrise du vol.</td>
</tr>
</tbody>
</table>
4.12. **HUD avec imagerie (EVS)**

Point de suspicion

L’imagerie pose un problème spécifique d’interprétation des images, notamment dans les bandes de fréquence non naturelles. L’abaissement des minimas par l’utilisation opérationnelle de la vision à travers les capteurs dans les conditions de mauvaise visibilité est également sujette à questionnement : une nouvelle règle FAA permet effectivement la poursuite des approches en dessous de la hauteur de décision sans EVS, jusqu’à une nouvelle hauteur de décision à laquelle la piste doit être visible et identifiable afin de pouvoir poursuivre l’approche. Ce concept de double décision n’a pas été accepté par les équipes JAA, en attendant l’acquisition d’une plus large expérience de l’utilisation de ces HUD avec EVS.

Comportements attendus ou non

La référence comportementale à l’usage du HUD complété d’une imagerie synthétique ne peut être que le pilotage à vue. Hors, la définition de l’image synthétique renforce :

- le rôle d’une profondeur de synthèse construite plus selon différentes sources d’information que par une réelle profondeur perceptive par synthèse.
- la place de symboles aux couleurs et formes plus dictées par la construction d’un espace défini par des contrastes colorés simultanés que par la relation à une base de vision écologique (conservation des principes perceptifs de la vision naturelle).

En conséquence, les comportements non attendus sont directement liés à des difficultés d’interprétation et d’exploitation des images et symbologies proposées.

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>AMC 25-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.b Chromaticity and Luminance</td>
<td></td>
</tr>
<tr>
<td>(1) Readability of the displays should be satisfactory in all operating and environmental lighting conditions expected in service. (…)</td>
<td></td>
</tr>
<tr>
<td>(4) (…)the following guidelines may be used: (…)</td>
<td></td>
</tr>
<tr>
<td>(vi) Raster fields conveying information such as weather radar displays should allow the raster to be independently adjustable in luminance from overlaid stroke symbology. The range of luminance control should allow detection of colour difference between adjacent small raster areas no larger than 5 milliradians in principal dimension; while at this setting, overlying map symbology, if present, should be discernible.</td>
<td></td>
</tr>
<tr>
<td>6.d d. Flicker</td>
<td></td>
</tr>
<tr>
<td>Flicker is an undesired rapid temporal variation in display luminance of a symbol, group of symbols, or a luminous field. Flicker can cause mild fatigue and reduced crew efficiency. (…) Frequencies above 55 Hz for stroke symbology or non-interlaced raster and 30/60 Hz for interlaced raster are generally satisfactory.</td>
<td></td>
</tr>
</tbody>
</table>

SAE ARP 5288

5.2.2 External View: The HUD should not significantly degrade the necessary visual field of view of the outside world for normal, abnormal, or emergency flight maneuvers during any phase of flight for a pilot seated at the DEP. The HUD should be evaluated to ensure that it does not significantly affect the ability of any crewmember to spot other traffic, distinctly see approach lights, runways, signs, markings, or other aspects of the external visual scene.

6.6 Raster Display Performance (Imaging Display)

When the HUD system is capable of displaying raster images, the HUD shall meet all requirements contained within this section in addition to the other display visual requirements of Section 6:
6.6.1 HUD Symbology and Raster Display Compatibility
When a combination of HUD stroke-written and raster symbology is used, that combination shall be sufficiently aligned and synchronized to avoid misleading information and to minimize pilot workload.

When the HUD has capability to switch between stroke-only and combined stroke/raster displays, the effects on display qualities during the transition shall be evaluated.

6.6.2 Raster Resolution: The HUD system raster resolution requirements shall be specified by the vendor to be consistent with imaging sensor angular resolution, the HUD optics and the intended function of the HUD-sensor system.

6.6.3 Raster Luminance: The HUD raster luminance shall be adequate to display a minimum number of gray shades against a real world background luminance which is representative of the environment in which the HUD and sensor system is intended to operate. The vendor shall specify the maximum background luminance in which the HUD and sensor system is intended to operate and the minimum number of gray shades the system is to display.

6.6.4 Raster Contrast Variation: The contrast ratio between sequential gray shades should be 1.4 ±0.4, -0.2 with appropriate HUD settings of brightness and contrast controls, and excluding the contribution of ambient background.

6.6.5 Raster Low Level Luminance: The HUD should be capable of providing a very dim, easily controllable image free of background glow in areas not displaying information in night conditions. The requirement can be considered to have been met when the following is achieved: In a dark ambient background (less than 0.34 cd/m² (0.1 fL)), with symbols and peak white video adjusted to approximately 1.7 cd/m² (0.5 fL), a minimum number of shades of gray specified by the manufacturer should be visible and the areas of the raster which are blank should not be visible.

6.6.6 Raster Luminance Uniformity: The variation in intensity between any two points within 10 degrees of each other or within the monocular FOV should not exceed plus or minus 35 percent when a flat field signal is applied. The Luminance Uniformity shall be calculated as shown in section 6.2.2.

6.6.7 Raster Positional Accuracy: The HUD shall be capable of displaying Video with the positional accuracies specified in section 6.1.1, excluding any video sensor and sensor installation errors.

6.6.8 Display Quality: During normal operation, the HUD shall not exhibit any objectionable flicker (defined as brightness variations at frequencies above 0.25 Hz) or jitter, (defined as positional oscillations at frequencies of greater than 0.25 Hz and amplitude greater than 0.6 mrad). There shall be no noticeable display noise, local disturbances or artifacts that detract from the use of the system.

6.6.9 Raster Display and Outside View Compatibility: The display of raster imagery on the HUD should not compromise the effective use of outside visual reference for required pilot tasks such as takeoff and landing, obstacle avoidance, aircraft collision avoidance, or weather or visual reference assessment.

Note: This requirement is not intended to preclude use of imagery to provide enhanced visual cues consistent with the above requirements.

6.6.9.1 Display Blooming from Bright Sources: Certain light sources, such as those used for airport and runway lighting, may result in unusually bright raster images or sudden increases in raster brightness (display blooming). These brightness characteristics shall not impair the pilot’s ability to recognize information required for the intended function of the HUD, and shall not distract the pilot while viewing through the HUD.

6.6.9.2 Automatic Brightness Control: Systems using automatic brightness control of raster or stroke and raster combined shall meet the applicable display luminance and contrast requirements defined in this section.

6.6.10 Mixed Symbology and Video Operation: When the HUD system incorporates a mode where stroke symbology is overlaid on a raster display, the pilot should be provided with controls to permit the independent adjustment of the video brightness. Video contrast (the difference between the black level and peak white) adjustment should be provided.
through either automatic or manual means, from an imperceptible level to the maximum stated by the manufacturer. The Pilot shall be provided with a control to permit the independent adjustment of the brightness of the symbols overlaid on the raster from an imperceptible level to the maximum specified by the manufacturer. See also the FAA Enhanced Flight Vision Systems; Final Rule, Jan 9, 2004.

<table>
<thead>
<tr>
<th>Dispositions adaptées à l'observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les moyens de renforcement perceptifs proposés ont en commun d’être destinés à se substituer à une vision naturelle réduite du fait de conditions météorologiques trop réductrices. Nous sommes dans un contexte de scénarios centrés sur des phases de vol d’approche, de circulation sur le terrain ou de décollage. Les tâches spécifiques de ces segments de vol seront les références pour l’analyse de tâche menée afin de définir les contenus des scénarios.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recueil de données comportementales</th>
</tr>
</thead>
<tbody>
<tr>
<td>La mise en situation est indispensable pour le recueil de données comportementales. Le simulateur est l’outil idéal et bien sûr un outil complexe qui doit être en mesure de produire tout à la fois une bonne dynamique de vol et une imagerie synthétique représentative de la réalité et des techniques de synthèse d’image. L’entretien sera un complément indispensable compte tenu de la complexité de la situation et de l’évaluation attendue. Une symbologie jointe à l’image de synthèse est une nouveauté pour l’ensemble de la population des pilotes. Si les études sur ces symbologies existent depuis des décennies, elles n’ont encore jamais été appliquées pour les appareils commerciaux. Il n’existe donc pas de populations entraînées à leur usage. Le problème de l’ entraînement des pilotes et de leur familiarité avec de tels dispositifs est donc primordial.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interprétation des résultats</th>
</tr>
</thead>
<tbody>
<tr>
<td>La complexité de l’interprétation est élevée compte tenu de leur nouveauté pour les pilotes et pour l’aménagement des règles d’opération qu’elles impliquent : fiabilité, efficacité. Elle doit donc être menée avec précision.</td>
</tr>
</tbody>
</table>
4.13. HUD dual

Point de suspicion

L’existence d’un ou de deux HUD (dual) modifie notablement les interactions. Ceci constitue à la fois un facteur de sécurité conforme aux principes du cross check, et en même temps un facteur de complexité du travail en équipage qu’il convient de prendre en compte lors de la certification, surtout si ces deux HUD sont considérés comme des instruments primaires.

Comportements attendus ou non

Le contrôle croisé du vol est une composante fondamentale du pilotage à deux pilotes. L’usage de deux HUD modifie l’interaction entre les deux pilotes, la répartition des tâches et des sources de données.

En particulier, le traitement des alarmes, la confrontation des différentes sources de données sont au centre de ce contrôle. Les comportements attendus seront ceux d’un bon partage des tâches au cours du travail en équipage.

<table>
<thead>
<tr>
<th>Textes et données de référence</th>
<th>SAE ARP 5288</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3 Dual HUD Considerations</td>
<td>In dual HUD installations, if both pilots are permitted to use their HUD simultaneously, the cockpit de-sign shall provide for the display within the normal eye scan of the flight crew of alert, caution, and warning annunciations.</td>
</tr>
<tr>
<td>9.4 Alerting Issues</td>
<td>Dual HUD installations require special consideration for alerting systems. It must be assumed that both pilots will be head up simultaneously, full or part time, especially for alternate means and additional credit HUDs. If master alerting indications are not provided within the peripheral field of view of each pilot while using the HUD, then each HUD shall provide annunciations that direct the pilot’s attention to head down alerting displays. Aural alerts by themselves are not always adequate to direct the pilot’s attention head down. The types of information that shall trigger the HUD master alerting display are any cautions or warnings not already duplicated on the HUD from head down primary displays, as well as any caution level or warning level engine indications or system alerts. Note: Do not want to redirect attention of the pilot flying to other display when an immediate maneuver is required (resolution advisory, windshear).</td>
</tr>
</tbody>
</table>

Dispositions adaptées à l’observation

L’analyse des tâches porte essentiellement sur les points du contrôle croisé et de la gestion tête haute / tête basse. Le scénario doit donc nécessairement comporter des activités de cette nature.

Recueil de données comportementales

Interprétation des résultats

Tout échappement de ce contrôle (confrontation des données, gestion des alarmes, travail d’équipage, …) manifesterait une limitation dans l’usage des 2 HUD. Evidemment, dans ce contexte, les règles et procédures qui seraient établies par les compagnies utilisatrices viennent compléter cette analyse puisque l’emploi de ce dispositif s’inscrit directement dans la définition de ces procédures. La mise en situation des pilotes ne peut éviter cette dimension dans l’entraînement qui leur est dispensé.
5. Conclusion

L’approche par points de suspicion proposée dans ce projet de guide rejoint la démarche recommandée par le nouveau texte AMC 25.1302 relatif à l’évaluation facteurs humains des équipements de cockpit lors de leur certification.

Même si chacun des points constitue un sujet d’étude en lui même, il n’est pas proposé ni envisagé d’avoir à traiter chacun de ces points avec le même niveau de détail. L’analyse globale des caractéristiques et des fonctions de l’équipement à évaluer, en tenant compte des expériences antérieures de certification, doit permettre de classer les points selon leur importance.

Un certain tri peut être défini à priori : les 5 premiers points sont liés à des questions normalement traitées en amont de la certification proprement dite, lors de la réception des matériels par exemple ou lors de la conception initiale de l’appareil.

Parmi les points de suspicion en situation, plusieurs catégories peuvent être distinguées :
- Ceux ayant trait à la dynamique des situations et à l’usage du HUD,
- D’autres davantage liés à la logique de conception du HUD.

Des évaluations conjuguées de certains points peuvent également être envisagées, en définissant des scénarios suffisamment complets. Cette démarche a l’avantage de conduire à des scénarios comportant des situations riches et plus proches de la réalité du vol en ligne.

Les interprétations des fiches proposées ci-dessus présentent un point commun : le constat de perte de contrôle ou de conséquences dommageables est un critère de non acceptabilité.

De ce point de vue, la statistique n'est pas la preuve la plus forte. En effet, la survenue d'une occurrence non souhaitée suffit à montrer l'existence d'une difficulté. La question est ensuite la réponse donnée à cette difficulté observée. Cette réponse dépend fondamentalement des mécanismes d’échec mis en jeu, qui appellent une analyse plus poussée, voire des essais complémentaires.

Ce projet de guide méthodologique reste à confronter à l'expérience réelle de la certification et à faire évoluer pour accompagner l’avancée rapide des technologies susceptibles de modifier radicalement les pratiques de pilotage, en permettant le développement de nouveaux concepts de systèmes HUD.
Liste des abréviations

AC Advisory Circular (FAA)
ACJ Advisory Circular, Joint (JAA)
ADI Attitude Director Indicator
AGL Above Ground Level
AMC Acceptable Means of Compliance (EASA)
ARP Aerospace Recommended Practice (SAE)
AS Aerospace Standard (SAE)
AWO All Weather Operations
CRI Certification Review Item (JAA)
CS Certification Specifications (EASA)
CSERIAC Crew System Ergonomics Information Analysis Center
DCSD Département Commande des Systèmes et Dynamique du vol
DGAC Direction Générale de l’Aviation Civile
DEP Design Eye Position
DH Decision Height
DME Distance Measuring Equipment
EADI Electronic Attitude Director Indicator
EASA European Aviation Safety Agency
EFIS Electronic Flight Instrument System
EGPWS Enhanced Ground Proximity Warning System
EHSI Electronic Horizontal Situation Indicator
ETSO European Technical Standard Order (EASA)
EVSI Enhanced Vision System
FAA Federal Aviation Administration
FAR Federal Aviation Regulations
FCPL Flight Crew Licensing
FHA Functional Hazard Assessment
FMC Flight Management Computer
FMS Flight Management System
FSB Flight Safety Board
GM Guidance Material
HAT Height Above Touchdown
HFDS Head-up Flight Display System (® Sextant)
HGS Head-up Guidance System (® Flight Dynamics)
HQRS Handling Qualities Rating Scale
HSI Horizontal Situation Indicator
HUD Head Up Display
IFR Instrument Flight Rules
ILS Instrument Landing System
IMASSA Institut de Médecine Aérospatiale du Service de Santé des Armées
IMC Instrument Meteorological Conditions
IP Issue Paper (FAA)
JAA Joint Aviation Authorities
JAR Joint Aviation Requirements
LVP Low Visibility Procedure
LVTO Low Visibility Take Off
MDA Minimum Decision Altitude
MEL Minimum Equipment List
NPA Notice of Proposed Amendment (EASA)
PF Pilot Flying
PFD Primary Flight Display
PNF Pilot Not Flying
POC Proof of Concept
RTCA Radio Technical Commission for Aeronautics
RVR Runway Visual Range
SAE Society of Automotive Engineers
SFACT Service de la Formation Aéronautique et du Contrôle Technique
SOAR State Of the Art Report
SOP Standard Operation Procedure
SVS Synthetic Vision System
TCAS Traffic Collision Avoidance System
TSO Technical Standard Orders
VFR Visual Flight Rules
VGS Visual Guidance System (© BAe Systems)
VMC Visual Meteorological Conditions
Annexe 1 : Type d’application, intégrité et disponibilité, concept d'emploi

Il apparaît indispensable de bien cerner ces notions qui conditionnent largement le processus de certification.

Le type d’application visé est une notion indispensable pour préciser l’utilisation proposée pour le HUD (SAE ARP 5288). La réglementation distingue ainsi les types d’application suivants :

- **Supplemental use** : le HUD vient en supplément de la tête basse ; il reste un instrument secondaire. Exemple : apport d’informations lors d’une approche manuelle à vue.
- **Alternate use** : le HUD peut être utilisé à la place des instruments en tête basse, il constitue un instrument primaire. Exemple : surveillance d’une approche automatique qui pourrait également être réalisée en tête basse.
- **Additional credit use** : le HUD permet d’augmenter les capacités opérationnelles de l’avion, il constitue un instrument primaire, son utilisation revêt un caractère obligatoire pour les opérations visées. Exemple : pilotage manuel d’approches sans visibilité pour lesquelles l’avion seul n’est pas certifié, réduction de minima sous pilote automatique.
- **Dual use** : l’installation d’un HUD sur chacun des 2 postes de pilotage est un concept émergent, pour lequel des conditions spéciales ont été publiées pour des cas de certification précis, en complément à la réglementation existante.

L’intégrité (fiabilité) et la disponibilité (comportement en cas de panne) du HUD sont deux propriétés essentielles abordées lors de la certification et étroitement liées au type d’application.

La réglementation prône une approche globale, le HUD comme tout système de bord devant être conçu pour assurer les fonctions pour lequel il est prévu dans toutes les situations opérationnelles prévisibles.

En terme d’intégrité, le paragraphe CS/FAR 25.1309 requiert que tout système, considéré séparément et en relation avec les autres systèmes, soit conçu de façon à ce que :

- toute défaillance pouvant empêcher la poursuite du vol et l’atterrissage en sécurité (Catastrophic failure condition) soit Extrêmement Improbable (probabilité d’occurrence inférieure à 10^{-9} par heure de vol)
- toute défaillance réduisant la capacité de l’avion ou de l’équipage à faire face aux conditions de la mission (Hazardous or Major) soit Improbable (Extremely Remote or Remote ; probabilité comprise entre 10^{-5} et 10^{-8}).

La réglementation utilise également la relation entre la sévérité d’une défaillance et sa probabilité d’occurrence afin de qualifier le niveau de criticité de chaque fonction offerte par l’équipement, telle que l’affichage de la symbologie entière ou d’un symbole, pour chaque opération proposée ; une fonction peut ainsi être critique, essentielle ou non essentielle (AC/AMC 25-11, JAR HUD 903).

Le concept d’emploi du HUD correspond à la façon dont le collimateur doit être utilisé. Parmi les produits existants, il est possible de distinguer trois concepts principaux :

1 Le JAR HUDS 903 distingue également supplemental et primary use.
• Le concept "manuel" : le HUD sert d'instrument de pilotage manuel. Pour les opérations sans visibilité, les ordres de guidage sont présentés sous la forme d'un directeur de vol.
• Le concept "surveillance" : le HUD sert à la surveillance du fonctionnement du pilote automatique. Lors des opérations sans visibilité, il ne présente pas d'ordre de guidage, mais seulement les écarts bruts à la trajectoire et leurs valeurs maximales admissibles. Dans ce concept, l'utilisation du HUD reste optionnelle puisque l'avion est certifié au même niveau avec ou sans HUD.
• Le concept "hybride" correspond à une extension du concept précédent pour permettre un gain opérationnel. Le HUD est alors utilisé en surveillance de l'approche automatique, et éventuellement en pilotage manuel en cas de défaillance du PA en dessous de la hauteur de décision. L'utilisation du HUD hybride est obligatoire pour permettre ce gain opérationnel.

Le choix d’un concept d’emploi est lié à la conception du rôle de l’équipage dans la conduite de l’appareil. Il est surtout fortement déterminé par les capacités de l’avion et son niveau d’automatisation. Le concept d’emploi est un élément déterminant pour la constitution de la symbologie : le concept manuel favorise une symbologie très complète donc chargée, les concepts d'emploi "surveillance" ou "hybride" favorisent une symbologie plutôt dépouillée. Cependant, les collimateurs modernes tendent à un domaine d'utilisation large et peuvent fréquemment être utilisés en "manuel" ou en "surveillance", avec des limitations d’emploi selon les phases de vol ou la catégorie lors des opérations par faible visibilité.
Annexe 2 : Catégories d’opérations

Les opérations par faible visibilité sont définies par le JAR OPS 1E notamment.

On distingue :

a) Les minimums de décollage (LVTO)

b) Les approches classiques

c) Les approches de précision

Les approches de précision sont elles-mêmes classées en catégories d’opération :

- Une opération de catégorie I est une approche de précision aux instruments utilisant ILS, MLS ou PAR suivie d’un atterrissage avec une hauteur de décision égale ou supérieure à 200 ft et une portée visuelle de piste égale ou supérieure à 550 m.

- Une opération de catégorie II est une approche de précision aux instruments suivie d’un atterrissage effectué à l’aide d’un ILS ou d’un MLS caractérisé par :
 - Une hauteur de décision comprise entre 100 et 200 ft ; et
 - une portée visuelle de piste non inférieure à 300 m.

- Les opérations de catégorie III se subdivisent comme suit :
 (i) Opérations de catégorie III A - Une approche de précision aux instruments suivie d’un atterrissage effectué à l’aide d’un système ILS ou MLS caractérisé par :
 - Une hauteur de décision inférieure à 100 ft ;
 - et une RVR égale ou supérieure à 200 m.
 (ii) Opérations de catégorie III B - Une approche de précision aux instruments suivie d’un atterrissage effectué à l’aide d’un système ILS ou MLS caractérisé par :
 - une hauteur de décision inférieure à 50 ft, ou sans hauteur de décision
 - et une RVR inférieure à 200 m, mais supérieure ou égale à 75 m.
Annexe 3 : Synthesis of the existing regulations

<table>
<thead>
<tr>
<th>Regulation</th>
<th>Origine</th>
<th>Status</th>
<th>Purpose</th>
<th>Instrument</th>
<th>Operation</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 25</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HUDS 903</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>x</td>
<td>x x</td>
</tr>
<tr>
<td>HUDS 902</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>HUDS 901</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>JAR AWO</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>JAR OPS 1/E</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>JAR OPS 4/3</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>AMC 25-11</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>CRI</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>FAR 25</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>- - - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC 25-11</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>AC 120-29a</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>AC 120-28d</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Memorandum</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>- - - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>FAA</td>
<td>x</td>
<td>x</td>
<td>- - - - - - - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAE ARP 4102/8</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x x</td>
<td>- - - - - - - - -</td>
<td></td>
</tr>
<tr>
<td>SAE ARP 5288</td>
<td></td>
<td>x</td>
<td>x x</td>
<td>x x x x x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

NB : a dash indicates a possibility, depending on the text considered in particular.
Annexe 4 : Description par symboles

Cette annexe présente un schéma typique de la symbologie analogique de base et rappelle la signification de ces principaux éléments constitutifs.

Le symbole de référence avion (souvent désigné sous le terme de maquette avion), est la trace de l’axe longitudinal de l’avion sur le collimateur. Ce symbole est donc fixe par rapport au collimateur ; c’est par rapport à lui que sont placés les autres symboles, mobiles dans le repère avion. Ce symbole est vu superposé à l’horizontale locale (i.e., à l’horizon lorsque l’avion est au niveau du sol), lorsque l’assiette longitudinale est nulle. Ce symbole prend classiquement la forme d’une silhouette d’avion vue de derrière (aile de mouette).

L’horizon et l’échelle de tangage sont des éléments solidaire entre eux. L’horizon est figuré par une ligne figurant l’horizontale locale. Il se superpose effectivement à l’horizon réel lorsque l’avion est au sol.

La position de l’horizon par rapport au HUD permet de connaître l’attitude de l’avion : inclinaison latérale et assiette longitudinale qui correspond à l’écart angulaire entre le symbole de référence avion et l’horizon. L’horizon constitue donc un élément du T basique. L’horizon est généralement gradué pour constituer une échelle de cap (non figurée sur le schéma ci dessus). L’échelle de tangage est solidaire de l’horizon. Généralement constituée de barres tous les 5 degrés, asymétrique à cabrer et à piquer, elle permet de repérer la valeur de l’assiette longitudinale et d’améliorer la perception de l’attitude.

Le vecteur vitesse constitue l’un des intérêts majeurs de la présentation d’informations en tête haute. Les premiers collimateurs tête haute figuraient un vecteur vitesse air, positionné à partir des valeurs d’incidence et de dérapage mesurées par les moyens anémométriques traditionnels. Avec la généralisation des centrales à inertie, le vecteur vitesse inertiel est aujourd’hui présenté sur l’ensemble des collimateurs modernes.
L’intérêt est que ce symbole indique directement la direction dans lequel l’avion se dirige ; cette information capitale devient accessible au pilote sans que celui-ci ait à intégrer mentalement les informations d’attitude et anémométriques et les effets du vent…

Les écarts angulaires entre le symbole de référence avion et le vecteur vitesse (VV) fournissent une évaluation des angles d’incidence et de dérapage (au vent près). L’écart angulaire entre l’horizon et le VV donne la valeur de la pente.

L’information de pente potentielle constitue un autre intérêt majeur des collimateurs tête haute ; elle est un des concepts de base initialement défendu par les ingénieurs d’essais français (Klopfstein, Wanner,…). On rappelle que la pente potentielle est une grandeur indicative dérivée de l’énergie totale de l’avion, obtenue par le calcul suivant :

L’énergie totale est : \(E = m g z + \frac{1}{2} m V^2 \).

La hauteur totale est définie par : \(H = z + \frac{V^2}{2g} \).

La dérivée fournit la vitesse ascensionnelle totale : \(W = \frac{dH}{dt} = V_z + \frac{V}{g} \frac{dV}{dt} \).

En utilisant \(V_z = V \sin \gamma \), on peut définir une pente totale (ou potentiel) telle que \(W = V \sin \gamma \) (en supposant \(W < V \) ; sinon la pente totale est de 90° : ce cas n’existe que pour les avions dotés d’un rapport poussée/poids supérieur à 1 ; il indique que l’avion est capable de monter à la verticale en continuant d’accélérer).

La pente potentielle est ainsi donnée par : \(\sin \gamma = \sin \gamma + \frac{1}{g} \frac{dV}{dt} \).

La pente potentielle de l’avion correspond donc à la pente que peut prendre l’avion avec la poussée courante, tout en conservant sa vitesse.

Cette information est généralement présentée sous la forme d’un chevron décalé pour coïncider avec l’aile du vecteur vitesse lorsque la pente potentielle est égale à la pente avion.

L’écart angulaire entre l’horizon et le chevron est directement égal à la pente potentielle. L’écart angulaire entre le vecteur vitesse et le chevron représente l’écart entre la pente actuelle et la pente potentielle : il figure l’accélération sur trajectoire, mesurée par un accéléromètre. Le chevron de pente potentielle permet donc le contrôle de la vitesse et de la poussée délivrée par les moteurs ; il permet également le contrôle du travail de l’automanette quand l’avion en est équipé. La pente potentielle constitue une aide au pilotage considérable, notamment aux basses vitesses (stabilisation de l’approche, résolution de l’instabilité de propulsion, passage d’orages, remise de gaz). Elle est également un élément de sécurité en cas de panne au décollage, puisqu’elle permet le contrôle direct de la pente maximale possible sans risque de dégrader la vitesse.

La connaissance de la vitesse air est indispensable pour le pilotage de l’avion puisqu’elle détermine les qualités de vol, tandis que la valeur de la vitesse sol détermine l’énergie de l’avion. La connaissance de la vitesse sol est également intéressante pour la gestion des situations de cisaillement de vent (windshear) mais bien souvent elle n’est utilisable que par des pilotes expérimentés. Les collimateurs récents présentent simultanément des affichages numériques des valeurs de la vitesse air et de la vitesse sol.
De façon analogue aux informations de vitesse air et sol, la connaissance de l’\textit{altitude barométrique} et de la \textbf{hauteur sol} est indispensable au pilotage et à la navigation. L’altitude barométrique est ainsi toujours présentée, tandis que la hauteur radio sonde est généralement présentée dès lors que la radio sonde fournit effectivement une information correcte, soit généralement à une hauteur inférieure à 1500 pieds.

Le signe de la \textit{vitesse verticale} est directement figuré en tête haute par l’écart entre l’horizon et le vecteur vitesse. L’affichage de la valeur numérique de la vitesse verticale n’apparaît pas directement nécessaire dans la mesure où cette valeur peut être évaluée à partir de la pente et de la valeur de la vitesse figurant sur le HUD. Cependant, la connaissance du ‘vario’ est une exigence fréquente de la part des pilotes d’expérience traditionnelle, et elle apparaît souvent utile pour le suivi des consignes données par le contrôle aérien.

L’\textit{écart de vitesse} est généralement figuré par une barre de longueur proportionnelle à la valeur de l’écart, située au bout de l’aile du vecteur vitesse. Il correspond à l’écart entre la vitesse actuelle et la vitesse visée (présélectionnée).
Annexe 5 : Outils subjectifs d’évaluation

Observations

Les observateurs doivent se mettre en accord sur les méthodes de recueil de données et sur l’ensemble des paramètres qu’ils souhaitent relever, à l’aide d’une grille commune à tous. Ces paramètres doivent être choisis en relation avec les points de suspicion propres au HUD. Pour cela, un premier canva de grille doit être élaboré collectivement. Il est ensuite possible de l’affiner grâce aux données (notamment vidéo) recueillies sur des observations exploratoires. Cette grille commune permet à chaque observateur d’être cohérent par rapport au reste du pool. En effet, si un seul observateur peut occuper le terrain (simulateur ou cockpit) pour des raisons de place, cette pré-définition des paramètres à relever garantit la récurrence des données recueillies par le groupe.

Ces observations outillées ou appareillées doivent conduire à la modélisation de l’activité. Elles doivent être continues sur les séquences de familiarisation et de simulation avec le HUD, et éventuellement complétées par des observations similaires sur des cas antérieurs ou des dispositifs équivalents. Ces observations devront être autant que possible transparentes dans le cas d’activité en situation réelle dans la mesure où l’interruption de tâche risquerait de mettre en danger le vol, mais pourront être plus intrusives dans le cas des simulations.

Outre l’ensemble des indices et des paramètres à recueillir selon les points à tester, il est fortement recommandé d’étoffer ces données avec des verbalisations.

Entretiens

Les procédures de simulation peuvent être complétées par des entretiens et des auto confrontation (en utilisant des enregistrements vidéo/audio/numérique des simulations). L’analyse de la verbalisation est très importante pour la validité des résultats d’une évaluation. Elle permet notamment d’obtenir des données sur l’évaluation du pilote de sa propre activité, et de compléter en explicitant les observations réalisées durant la simulation. Les verbalisation donnent accès de façon complémentaire aux mécanismes et règles d'action (domaines de la résolution de problèmes).

Ces verbalisations recueillies lors d'un entretien d'explicitation peuvent être provoquées à propos de la tâche, durant la tâche à exécuter (attention aux problèmes d'interférence avec la tâche), ou consécutives à la réalisation de la tâche (attention au problèmes de mémorisation). Cinq principes sont fondamentaux à la mise en œuvre d’un entretien. Il faut :
- fournir une spécification extrêmement précise des situations et des événements (c'est à dire "la personne fait / dit quoi, à quel moment et pourquoi)
- replacer dans leur contexte les événements verbalisés
- susciter une évocation mentale de la situation
- utiliser des questions et des relances descriptives non impératives
- et guider étroitement le questionnement.

NB : La connaissance du langage opératif par l'interviewer est impérative.

L’activité de pilotage est composée de plusieurs type de comportements : Ceux-ci ne s’étudie pas uniformément. Ainsi, pour des compétences basées sur des automatismes, les techniques de verbalisation ne sont pas pertinentes (l’usager n’est pas conscient de ce qu’il réalise). En revanche, il est possible d’observer le comportement spontané et d’analyser les délais de réponse ou l’exploration visuelle dans le cas de comportements basés sur les habiletés. Concernant les comportements fondés sur les règles, il est possible d’utiliser les verbalisations produites dans le contexte.
Dans le cas présent, il est donc nécessaire d’étudier les verbalisations en contexte ou en auto confrontation pour comprendre l’activité du point de vue des compétences basées sur les habiletés et les règles. Les compétences basées sur des automatismes doivent être étudiées par une autre méthode.

Lors des entretiens, le rôle de l’intervieweur est fondamental. Il doit faciliter la parole chez l’interlocuteur tout en parlant le moins possible. Il ne s’agit en effet pas d’un questionnaire, à moins que celui-ci ne soit un support à l’entretien, car un questionnaire ne provoque pas de verbalisations. L’interviewer doit donc :
- poser peu de questions,
- recentrer sur le thème si le sujet se disperse,
- accepter des développements parallèles si ceux-ci sont intéressants,
- accepter les silences sans forcément tenter de les éviter dans la mesure où les silences sont des moments permettant à l’interlocuteur de se rappeler quelque chose ou de se resituer.
- s’abstenir de s’impliquer dans le contenu de l’entretien,
- peu se manifester
- créer un climat de confiance.

Les relances sont un point clé de l’entretien. Utiliser un simple "pourquoi? » n’aboutit souvent qu’à "parce que". Quelques relances classiques sont efficaces
- Si je comprends bien, vous voulez dire que ?
- Oui ?
- Vous disiez que..., pouvez-vous préciser ?
- Quand vous dites que ... cela veut dire quoi exactement?
- Quand vous dites que... comment faites-vous? Vous pouvez me montrer ?
- Vous aviez parlé de deux aspects, vous avez développé le 1er, mais le 2ème ?

Différents types d’entretiens dans le travail :
- entretien exploratoire: questions assez ouvertes
- entretien semi-directif ou semi-dirigé: construction d'un canevas, une série de questions-guides (questions ouvertes). C'est le type d'entretien le plus utilisé
- entretien centré (focused interview) : liste de points précis relatif au thème étudié afin d'analyser l'impact d'un événement précis sur celui ou celle qui a assisté ou participé.

Analyse de l’entretien

Toutes les méthodes d'analyse ne sont pas équivalentes et ne donnent pas les mêmes résultats. Pour choisir la méthode qui donnera les résultats les plus fiables, il faut donc tenir compte des objectifs de recherche et du champ étudié.

Globalement, l’analyse du contenu d’un entretien se fait par découpage du protocole brut en unités de raisonnement grâce au regroupement des unités de connaissances verbalisées sous la forme de règles de production "SI - condition - ALORS - action".
direction générale
de l'Aviation civile
direction des affaires
stratégiques et techniques

sous-direction
de la sécurité et de
l'espace aérien

bureau des aéronefs et
de l'exploitation

50, rue Henry Farman
75720 Paris cedex 15

téléphone : 01 58 09 46 87
télécopie : 01 58 09 45 13
mél : stephane.deharvengt
@aviation-civile.gouv.fr